1 Research Centre for Sustainable Production System and Life Cycle Assessment, National Research and Innovation Agency, Indonesia

2 Department of Chemical Engineering, UPN Veteran Yogyakarta, Sleman, Yogyakarta, Indonesia

3 Department of Marine Product Processing, Polytechnics of Marine and Fisheries of Jembrana, Bali, Indonesia

4 Research Centre for Horticulture and Plantation, National Research and Innovation Agency, Indonesia

5 Department of Agrotechnology, University of Sebelas Maret, Surakarta, Center Java, Indonesia

6 Department of Chemical Engineering, Institut Teknologi Kalimantan, Balikpapan 76127, Indonesia



BACKGROUND AND OBJECTIVES: During this energy transition, research is being done to develop sustainable ways to support the shift to a decarbonized energy and production system. These ways include using renewable energy sources to promote circularity in products, green technologies, and safer procedures. Anaerobic digestion of palm oil mill effluent is a beneficial process for generating biogas, while the waste can also be utilized as fertilizer. The biogas can be further refined into biomethane, a valuable resource commonly used in transportation and power generation. The objective of this study is to examine the enhancement of biogas from Palm oil mill effluent and the elimination of sludge nutrients by utilizing microalgae Chlorella vulgaris. The microalgae will be cultivated in a modified photobioreactor to enhance the capture of carbon dioxide.
METHODS: The study utilized anaerobic batch reactor digesters. A modified photobioreactor, consisting of two columns separated by a membrane, was developed for the technological advancement of biogas upgrading, specifically for carbon dioxide capture and biogas upgrading. A technological gap in biogas upgrade technology innovation is filled by the improved photobioreactor. To optimize the bio-fixation of carbon dioxide from flue gas, it is essential to carefully select a suitable strain of microalgae that possesses both a strong ability to absorb carbon dioxide and a high tolerance to varying concentrations of this gas. By choosing the right strain, the efficiency of carbon dioxide removal can be significantly enhanced. Since Chlorella vulgaris microalgae have demonstrated this potential, they were chosen for this investigation. Microalgae also play a role in removing nutrients contained in the sludge.  
FINDINGS: Numerous chemical and biological methods have been used to upgrade biogas. Results of biological upgrading of biogas from palm oil mill effluent have been reported, with carbon dioxide removal reaching 89 percent until the methane concentration of the biogas is upgraded to 84 percent. The highest biomass of 1,835 grams per liter was achieved by culturing the microalgae Chlorella vulgaris in laboratory-scale photobioreactors. In this study, the application of 15 percent volume per volume biogas with an optical density of 0.4 was found to be optimal for the growth of the microalgae. The cultivation period lasted for 14 days. The peak biomass production was observed due to the achievement of a remarkable 98 volume per volume efficiency in carbon dioxide removal, which subsequently led to a significant rise in methane content, reaching 60 percent. The enhanced biogas achieved a peak methane content of 98 percent, indicating a significant improvement in quality.
CONCLUSION: The findings of this study, conducted using a modified photobioreactor, indicate that Chlorella vulgaris demonstrated high efficacy in the removal of carbon dioxide, with a rate of up to 90 percent. Additionally, it exhibited remarkable performance in upgrading biogas derived from palm oil mill effluent, achieving a conversion rate of up to 98 percent. The optical density of microalgae at 0.4 played a crucial role in these processes. Furthermore, Chlorella vulgaris showcased its ability to effectively eliminate nutrient nitrogen, reaching a removal rate of 90 percent at an optical density of 0.2. Moreover, it demonstrated a phosphate removal rate of 80 percent at an optical density of 0.4.

Graphical Abstract

Biogas quality and nutrient remediation in palm oil mill effluent through Chlorella vulgaris cultivation using a photobioreactor


  • Application of microalgal cultivation in an advanced modified photobioreactor system is suitable for POME biogas upgrade, sludge nutrient removal;
  • Chlorella vulgaris was able to perform CO2 removal from biogas up to 98%;
  • By using Chlorella vulgaris is more effective than natural to remove nutrients in sludge;
  • Biological treatment of POME generates biogas and organic fertilizer, which contribute to environmental sustainability.


Main Subjects


©2024 The author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit:


GJESM Publisher remains neutral concerning jurisdictional claims in published maps and institutional affiliations.


Google Scholar Scopus Web of Science PlumX Metrics Altmetrics Mendeley |


GJESM Publisher

Letters to Editor

GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.