1 Department of Stricto Sensu Graduate Program in Environmental Sciences, Brazil University, Campus Fernandópolis-Est. Projetada F-1, s/n - Fazenda Santa Rita, 15600-000, Fernandópolis, SP, Brazil

2 2Aquaculture Center, São Paulo State University, Via de Acesso Prof. Paulo Donato Castellane, s/n - Jaboticabal - 14884-900, SP, Brazil


Floating platforms at the hydropower plant reservoirs are attractive sites for aquaculture, fishing and other recreational activities. However, the unregulated construction of these platforms may negatively affect the fauna, flora and water quality of reservoirs. Thus, this study aimed to evaluate the impact of floating platforms on the limnological aspects of Nova Ponte hydropower plant reservoirs at the Center-West of Minas Gerais State of Brazil. The obtained data were analyzed using the correlation and regression analysis. Dissolved oxygen, biochemical oxygen demand, chemical oxygen demand, total coliforms and thermotolerant bacteria were plotted against the density of floating platforms. The density of platforms significantly (p-value > 0.05) impacted the analyzed limnological aspects of reservoirs. Based on the present results, 4 floating platforms/km2 (1 platform per 25 hectares) of surface water should be the maximum density in order to avoid the deterioration of water quality of reservoirs. With 4 platforms/km2, the expected values in fishing period were estimated to be 5.4 mg/L for biochemical oxygen demand, 375 most probable number per 100 mL of sample for thermotolerant bacteria and 6.1 mg/L for chemical oxygen demand. In fishing-ban period, the expected values were estimated to be 4.1 mg/L for dissolved oxygen, 3.4 mg/L for biochemical oxygen demand, 379 most probable number per 100 mL of sample for thermotolerant bacteria and 4.2 mg/L for chemical oxygen demand. This finding provides important base-line information which could help policy makers to take effective measurements for the appropriate management of surface water resources.

Graphical Abstract


  • At the platforms-concentrated areas, the reductions in DO observed were 45 and 57% in fishing and fishing-ban periods, respectively;
  • The increase in BOD and COD observed was 92 and 146% in fishing and 169 and 237% in fishing-ban period, respectively.
  • Total coliforms exceeded above 4,500 (MPN)/100 mL at the maximum density of platforms (700 platforms/km2);
  • Fishing and excessive agglomeration of platforms, maximum 1 platform in an area of 158 by 158 m, adversely influenced the water quality variables.


Main Subjects

Abd-Elrahman A.; Croxton, M.; Pande-Chettri, R.; Toor, G.S.; Smith, S.; Hill, J., (2011). In situ estimation of water quality parameters in freshwater aquaculture ponds using hyperspectral imaging system. ISPRS J. Photogramm. Remote Sens., 66(4): 463-472 (10 pages).

APHA, (2005). Standard Methods for the Examination of Water and Wastewater. 21st Edition, American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC, (8 pages).

ANA, (2013). Conjuntura dos recursos hídricos no Brasil. Brasil Agência Nacional das Águas. Brasília, (432 pages).

Behmel, S.; Damour, M.; Ludwig, R.; Rodriguez, M.J., (2016). Water quality monitoring strategies - A review and future perspectives. Sci. Total Environ. 571: 1312-1329 (18 pages).

Binet, D.; Le Reste, L.; Diouf, P.S., (1995). The influence of runoff and fluvial outflow on the ecosystems and living resources of West African coastal waters, in: FAO Marine Resources Service, Fishery Resources Division. Effects of riverine inputs on coastal ecosystems and fisheries resources. Rome: FAO Fisheries Technical Paper, 349 (133 pages).

BMPA, (2011). Pesca no Brasil. Boletim estatístico da pesca e aquicultura, 2011. Brasil Ministério da Pesca e Aquicultura. Brasília, (59 pages).

BMPA, (2014). Pesca no Brasil. Brasília. Brasil Ministério da Pesca e Aquicultura.

Bora, M.; Goswami, D.C., (2017). Water quality assessment in terms of water quality index (WQI): Case study of the Kolong River, Assam, India. Appl. Water Sci., 7(6): 3125-3135 (11 pages).

Chapman D.V.; Bradley, C.; Gettel, G.M., (2016). Developmentsin water quality monitoring and management in large river catchments using the Danube River as an example. Environ. Sci. Policy. 64: 141–154 (14 pages).

Chen, J.; Shi, H.; Sivakumar, B.; Peart, M.R., (2016). Population, water, food, energy and dams. Renewable Sustainable Energy Rev., 56: 18–28 (11 pages).

Dessu, B.S.; Melesse, M.A., Bhat, G.M., Mcclain, E.M., (2014). Assessment of water resources availability and demand in the Mara river basin. Ken. Cat., 115: 104–114 (11 pages).

Dias, V.S.; Luz, M.P.; Medero, G.M.; Nascimento, D.T.F., (2018). An overview of hydropower reservoirs in brazil: current situation, future perspectives and impacts of climate change. Water, 592(10): 1-18 (18 pages).

DOEMGS, (2012). Decreto n. 1.210, de 03 de julho de 2012. Dispõe sobre a instalação de tablados flutuantes nos corpos hídricos do estado de Mato Grosso e dá outras providências. Diário Oficial do Estado do Mato Grosso do Sul. (3 pages).

DORFB, (2005). Resolução n. 357, de 17 de março de 2005. Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências. Diário Oficial da República Federativa do Brasil. (23 pages).

Edberg, S.C.; Rice, E.W.; Karlin, R.J.; Allen, M.J., (2000). Escherichia coli: The best biological drinking water indicator for public health protection. J. Appl. Microbiol., 88: 1068-1168 (101 pages).

Eiger, S., (2003). Autodepuração dos cursos d’água, in: Mancuso, P.C.S., Santos, H.F.D. (Eds.), Reúso de Água, 1st. Ed. Universidade de São Paulo, Barueri, São Paulo, Brasil: Manole, 233-260 (28 pages).

FAO, (2013). Guidelines to control water pollution from agriculture in China: decoupling water pollution from agricultural production. Rome: FAO, 2013 (197 pages).

Haritash, A.K.; Gaur, S.; Garg, S., (2016). Assessment of water quality and suitability analysis of River Ganga in Rishikesh, India. Appl. Water Sci., 6(4): 383-392 (10 pages).

Henry-Silva, G.G.; Camargo, A.F.M., (2008). Impacto das atividades de aquicultura e sistemas de tratamento de efluentes com macrófitas aquáticas - relato de caso. Bol. Inst. Pesca, 34(1): 163-173 (11 pages).

Hubbard, R.K., (2009). Floating vegetated mats for improving surface water quality. Emerging Environ. Technol., 2: 211-244 (34 pages).

IPCC, (2014). Climate Change 2014: Impacts, Adaptation and Vulnerability—Fifth Assessment Report—Part B: Regional Aspects.

Jiang, C.; Xiong, L.; Wang, D., (2015). Separating the impacts of climate change and human activities on runoff using the Budyko-type equations with time-varying parameters. J. Hydrol., 522: 326-338 (13 pages).

Khalil, B.; Ouarda, T.B.M.J., (2009). Statistical approaches used to assess and redesign surface water-quality-monitoring networks. J. Environ. Monit., 11: 1915-1929 (15 pages).

Köppen, W., (1901). Versuch einer Klassifikation der Klimate, vorzugweise nach ihren Beziehungen zur Pflanzenwelt. Meteorol. Z., 18: 106–120 (15 pages).

Kükrer, S.; Mutlu, E., (2019). Assessment of surface water quality using water quality index and multivariate statistical analyses in Saraydüzü Dam Lake, Turkey. Environ. Monit. Assess., 191: 71-87 (17 pages).

Larentis, D.G.; Collischonn, W.; Tucci, E.C.M., (2008). Simulação da qualidade de água em grandes bacias: Rio Taquari-Antas, RS. Rev. Bras. Recur. Hídricos, 13: 5-22 (18 Pages).

Lasage, R.; Aerts, J.C.J.H.; Verburg, P.H.; Sileshi, A.S., (2015). The role of small scale sand dams in securing water supply under climate change in Ethiopia. Abbreviation Title Mitigation Adapt. Strategies Global Change. 20(2): 317–339 (23 Pages).

Luz, M.P.; Beevers, L.C.; Cuthbertson, A.J.S.; Medero, G.M.; Dias, V.S.; Nascimento, D.T.F., (2016). The mitigation potential of buffer strips for reservoir sediment yields: The itumbiara hydroelectric power plant in Brazil. Water, 489(8): 1-12 (12 pages).

Nnji, C. J.; Uzairu A.; Harrison G.F.S.; Balarabe, M.L. (2010). Effect of polluition on the phisico chemical parameters of water and sediments of Galma River, Zaria, Nigeria. Libyan Agric. Res. Cen. J. Int., 1(2): 115-122 (8 pages).

Nóbrega, M.T.; Collischonn, W.; Tucci, C.E.M.; Paz, A.R., (2011). Uncertainty in climate change impacts on water resources in the Rio Grande basin, Brazil. Hydrol. Earth Syst. Sci., 15: 585-595 (11 Pages).

Patil, P.N; Sawant, D.V., Deshmukh, R.N., (2012). Physico-chemical parameters for testing of water –A review. Int. J. Environ. Sci., 3(3): 1194-1207 (14 pages).

Poff, N.L.R.; Olden, J.D., (2017) Can dams be designed for sustainability? Science. 358: 1252–1253 (2 Pages).

Porcher, L.C.F.; Poester, G.; Lopes, M.; Schonhofen, P.; Silvano, R.A.M., (2010). Percepção dos moradores sobre os impactos ambientais e as mudanças na pesca em uma lagoa costeira do litoral sul do Brasil. Bol. Inst. Pesca,36(1): 61-72 (12 pages).

Scudder, T.; Conelly, T., (1985). Management systems for riverine fisheries. Rome: FAO Fisheries Technical Paper, 263, (85 pages).

Sentelhas, P.C.; Marin, F.R.; Ferreira, A.S.; SÁ, E.J.S., (2003). Banco de dados climáticos do Brasil. Brasília: Embrapa Monitoramento por Satélite.

Spirelle, L.C.; Beaumord, A.C., (2006). Formulação de uma hipótese global de situação de impacto para o parque industrial pesqueiro instalado em Itajaí e Navegantes - SC. Eng. Sanit. Ambient., 11: 380-384 (5 pages).

SPSS, (2008). SPSS Statistics for Windows, Version 17.0. Chicago: Statistical Package for Social Sciences Inc.

Tarcitani, F.C.; Barrella, W., (2009). Conhecimento etnoictiológico dos pescadores desportivos do trecho superior da Bacia do Rio Sorocaba. Rev. Eletr. Biol., 2: 1-28 (28 pages).

Vanzela, L.S.; Souza, R.A.; Pitaro, F.A.M.; Silva, P.F.A.; Sanches, A.C., (2012). Influência da ocupação do solo e do excedente hídrico sobre a vazão e transporte de sedimentos. Irriga, 1(1): 181-191 (11 pages).

Letters to Editor

GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.