Document Type: ORIGINAL RESEARCH PAPER

Authors

1 Department of Marine Biology, Faculty of Marine Sciences, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran

2 Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran

3 Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, USA

Abstract

Fipronil is a relatively new insecticide in agriculture with health and environmental effects. This is the first report studying effect of fipronil on fish administered via intraperitoneal route. Intraperitoneal LD50  of fipronil in 16.3 g Caspian kutum, Rutilus frisii kutum, fingerlings was determined using a total of 133 fish in 19 tanks (7 fish/tank) including one control and 6 treatment groups (300, 450, 550, 650, 750, 850 mg/kg). Fish were injected intraperitoneally and monitored at 96 h. The LD50 of fipronil was 632 mg/kg in Caspian kutum. Sub-lethal test doses of 10, 20, and 30% of the LD50 at 96 h were used to assess the effect of fipronil on the fish’s liver.  The blood plasma of 90 fish were used (18 at each test dose and in controls) on days 7 and 14 for biochemistry. The hepatosomatic index (HSI) of the livers were obtained and histopathology done on the same days. Pyknosis, sinusoid dilation and vacuolization were common histological changes, and these changes became more severe in a time and dose dependent manner. This dependence was also observed for HSI and the liver biochemical test (alanine and aspartate transaminase). Liver histological alterations showed that fipronil can be a potential factor in liver carcinoma.

Graphical Abstract

Highlights

  • Fipronil has slight toxicity to Caspian kutum treated via intraperitoneal route
  • Fipronil induces liver histological, biochemical and morphological alterations in a time and dose dependent manner
  • Fipronil can be a potential factor in liver carcinoma.

Keywords

Main Subjects

Aajoud, A.; Ravanel, P.; Tissut, M., (2003). Fipronil metabolism and dissipation in a simplified aquatic ecosystem. J. Agric. Food Chem., 51(5): 1347-1352 (6 pages).

Aghamirkarimi, Sh.; Mashinchian Moradi, A.; Sharifpour, I.; Jamili, Sh.; Ghavam Mostafavi, P., (2017).  Sublethal effects of copper nanoparticles on the histology of gill, liver and kidney of the Caspian roach, Rutilus rutilus caspicus. Global J. Environ. Sci. Manage., 3(3): 323-332 (10 pages).

Altinok, I.; Capkin, E., Karahan, S., Boran, M., (2006). Effects of water quality and fish size on toxicity of methiocarb, a carbamate pesticide, to rainbow trout. Environ. Toxicol. Pharmacol., 22(1): 20-26 (7 pages).

Alyokhin, A.; Baker, M.; Mota-Sanchez, D.; Dively, G.; Grafius, E., (2008). Colorado potato beetle resistance to insecticides. Am. J. Potato Res., 85(6): 395-413. (19 pages).

Beggel, S.; Werner, I.; Connon, R.E.; Geist, J.P., (2010). Sublethal toxicity of commercial insecticide formulations and their active ingredients to larval fathead minnow (Pimephales promelas). Sci. Total Environ., 408(16): 3169-3175 (7 pages).

Beggel, S.; Werner, I.; Connon, R.E.; Geist, J.P., (2012). Impacts of the phenylpyrazole insecticide fipronil on larval fish: time-series gene transcription responses in fathead minnow (Pimephales promelas) following short-term exposure. Sci. Total Environ., 426: 160-165 (6 pages).

Bhagwant, S.; Elahee, K.B., (2002). Pathologic gill lesions in two edible lagoon fish species, Mulloidichtys flavolineatus and Mugil cephalus, from the Bay of Poudre d, Or, Mauritis, Westem Indian Ocean. J. Mar. Sci., 1: 35–42 (8 pages).

Bhattacharya, H.; Xiao, Q.; Lun, L., (2008). Toxicity studies of nonylphenol on rosy barb (Puntius conchonious): a biochemical and histopathological evaluation. Tissue Cell., 40(4): 243–249 (7 pages).

Bobe, A.; Meallier, P.; Cooper, J-F.; Coste, C.M., (1998). Kinetics and mechanisms of abiotic degradation of fipronil (hydrolysis and photolysis). J. Agric. Food Chem., 46(7): 2834-2839 (6 pages).

Budd, R.; Ensminger, M.; Wang, D.; Goh, K. S., (2015). Monitoring fipronil and degradates in California surface waters. J. Environ. Quality, 44(4): 1233-1240 (8 pages).

Casida, J. E.; Durkin, K. A., (2015). Novel GABA receptor pesticide targets. Pesticide Biochem. Physiol.,        121: 22-30 (9 pages)

Das, P.C.; Cao, Y., (2006). Cherrington N, Hodgson E, Rose RL. Fipronil induces CYP isoforms and cytotoxicity in human hepatocytes. Chem. Biol. Interact., 164(3): 200–214 (15 pages).

De Oliveira, P.R.; Bechara, G.H.; Denardi, S.E.; Oliveira, R.J.; Mathias, M.I.C., (2012.a). Genotoxic and mutagenic effects of fipronil on mice. Exp. Toxicol. Pathol., 64(6): 569-573 (5 pages).

De Oliveira, P.R.; Bechara, G.H.; Denardi, S.E.; Oliveira, R.J.; Mathias, M.I.C., (2012.b). Cytotoxicity of fipronil on mice liver cells. Microscopy Res. Tech., 75(1): 28-35 (8 pages).

De Smet, H.; Blust, R., (2001). Stress responses and changes in protein metabolism in carp Cyprinus carpio during cadmium exposure. Ecotoxicol. Environ. Safety, 48(3): 255–262 (8 pages).

Dich, J.; Zahm, S.H.; Hanberg, A.; Adami, H.O., (1997). Pesticides and cancer. Cancer Causes Contr., 8(3):420–443 (24 pages).

Driver, C.J.; Drown, D.B.; Ligotke, M.W.; Van Voris, P.; McVeety, B.D.; Greenspan, B.J., (1991). Routes of uptake and their relative contribution to the toxicologic response of northern bobwhite (Colinus virginianus) to an organophosphate pesticide. Environ. Toxicol. Chem., 10(1): 21-33 (13 pages).

EPA, (2012). United States Environmental Protection Agency. Ecological Risk Assessment, USA.

Ferreira, M.; De Oliveira, P.R.; Denardi, S. E.; Bechara, G.H.; Mathias, M.I.C., (2012). Action of the chemical agent fipronil (active ingredient of acaricide Frontline®) on the liver of mice: An ultrastructural analysis. Microscopy Res. Tech., 75(2): 197-205 (9 pages).

Ghadimi, R.; Taheri, H.; Suzuki, S.; Kashifard, M.; Hosono, A.; Esfandiary, I.; Moghadamnia, A.; Ghadimi, R.; Tokudome, S., (2007). Host and environmental factors for gastric cancer in Babol, the Caspian Sea Coast, Iran. Eu J cancer prev., 16(3): 192-195 (4 pages).

Gibbons, D.; Morrissey, C.; Mineau, P., (2015). A review of the direct and indirect effects of neonicotinoids and fipronil on vertebrate wildlife. Environ. Sci. Pollut. Res., 22(1): 103-118 (16 pages).

Gupta, S.K.; Pal, A.K.; Sahu, N.P.; Saharan, N.; Prakash, C.; Akhtar, M.S.; Kumar, S., (2014). Haemato-biochemical responses in Cyprinus carpio (Linnaeus, 1758) fry exposed to sub-lethal concentration of a phenylpyrazole insecticide, fipronil. Proceedings of the National Academy of Sciences, India Section B: Biol. Sci., 84(1): 113-122 (10 pages).

Hodson, P.V.; Dixon, D.G.; Kaiser, K.L., (1988). Estimating the acute toxicity of waterborne chemicals in trout from measurements of median lethal dose and the octanol‐water partition coefficient. Environ. Toxicol. Chem., 7(6): 443-454 (12 pages).

Hutchinson, T.H.; Barrett, S.; Buzby, M.; Constable, D.; Hartmann, A.; Hayes, E.; Huggett, D.; Laenge, R.; Lillicrap, A.D.; Straub, J.O.; Thompson, R.S., (2003). A strategy to reduce the numbers of fish used in acute ecotoxicity testing of pharmaceuticals. Environ. Toxicol. Chem., 22(12): 3031-3036 (6 pages).

Key, P.B.; Chung, K.W.; Opatkiewicz, A.D., (2003). Wirth EF, Fulton MH. Toxicity of the insecticides fipronil and endosulfan to selected life stages of the grass shrimp (Palaemonetes pugio). Bull. Environ. Contamin. Toxicol., 70(3): 533-540 (8 pages).

Khalil, S.R.; Awad, A.; Mohammed, H.H., (2017). Behavioral response and gene expression changes in fipronil-administered male Japanese quail (Coturnix japonica). Environ. Pollut., 223: 51-61 (11 pages).

Kitulagodage, M.; Buttemer, W.A.; Astheimer, L.B., (2011). Adverse effects of fipronil on avian reproduction and development: maternal transfer of fipronil to eggs in zebra finch Taeniopygia guttata and in ovo exposure in chickens Gallus domesticus. Ecotoxicol., 20(4): 653-660 (8 pages).

Mohebbi, M.; Mahmoodi, M.; Wolfe, R.; Nourijelyani, K.; Mohammad, K.; Zeraati, H., (2008). Fotouhi A. Geographical spread of gastrointestinal tract cancer incidence in the Caspian Sea region of Iran: spatial analysis of cancer registry data. BMC cancer., 8(1): 137.

Mossa, A.T.H.; Swelam, E.S.; Mohafrash, S.M.M., (2015). Sub-chronic exposure to fipronil induced oxidative stress, biochemical and histotopathological changes in the liver and kidney of male albino rats. Toxicol. Rep., 2: 775-784 (10 pages).

Peveling, R.; Demba, S.A., (2003). Toxicity and pathogenicity of Metarhizium anisopliae var. acridum (Deuteromycotina, Hyphomycetes) and fipronil to the fringe‐toed lizard Acanthodactylus dumerili (Squamata: Lacertidae). Environ. Toxicol. Chem. 22(7): 1437-1447 (11 pages).

Planchart, A.; Mattingly, C.J.; Allen, D.; Ceger, P.; Casey, W.; Hinton, D.; Kanungo, J.; Kullman, S.W.; Tal, T., (2016). Bondesson M, Burgess SM. Advancing toxicology research using in vivo high throughput toxicology with small fish models. Altex. 33: 435-452 (18 pages).

Pickford, K.A.; Thomas-Jones, R.E.; Wheals, B.; Tyler, C.R.; Sumpter, J.P., (2003). Route of exposure affects the oestrogenic response of fish to 4-tert-nonylphenol. Aquat. Toxicol., 65(3): 267-279 (13 pages).

Qureshi, I.Z.; Bibi, A.; Shahid, S.; Ghazanfar, M., (2016). Exposure to sub-acute doses of fipronil and buprofezin in combination or alone induces biochemical, hematological, histopathological and genotoxic damage in common carp (Cyprinus carpio L.). Aquat. Toxicol., 179: 103-114 (12 pages).

Ritz, C., (2010). Toward a unified approach to dose–response modeling in ecotoxicology. Environ. Toxicol. Chem., 29(1): 220-229 (10 pages).

Schiff, E.R.; Sorrell, M.F.; Maddrey, W.C., (2007). Schiff’s Diseases of the Liver. Philadelphia: Lippincott Williams and Wilkins.

Seven, A.; Güzel, S.; Seymen, O.; Civelek, S.; Bolayirh, M.; Uncu, M., (2004). Effects of vitamin E supplementation on oxidative stress in streptozotocin induced diabetic rats: investigation of liver andplasma. Yonsei Med. J., 45(4): 703-710 (8 pages).

Simon-Delso, N.; Amaral-Rogers, V.; Belzunces, L.P.; Bonmatin, J.M.; Chagnon, M.; Downs, C.; Furlan, L.; Gibbons, D.W.; Giorio, C.; Girolami, V.; Goulson, D., (2015). Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environ. Sci. Poll. Res., 22(1): 5-34. (30 pages).

Soliman, A.S.; Hung, C.W.; Tsodikov, A.; Seifeldin, I.A.; Ramadan, M.; Al-Gamal, D.; Schiefelbein, E.L., (2010). Thummalapally P, Dey S, Ismail K. Epidemiologic risk factors of hepatocellular carcinoma in a rural region of Egypt. Hepatol Int., 4(4):681–690 (10 pages).

Tingle, C.C.; Rother, J.A.; Dewhurst, C.F.; Lauer, S.; King, W.J., (2003). Reviews of Environmental Contamination and Toxicology. Fipronil: environmental fate, ecotoxicology, and human health concerns; Springer, New York.

Trauner, M.; Arrese, M.; Wagner, M., (2010). Fatty liver and lipotoxicity. Biochim. Biophys. Acta, 1801(3): 299–310 (12 pages).

Van der Oost, R.; Beyer, J.; Vermeulen, N.P., (2003). Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ. Toxicol. Pharmacol., 13(2): 57-149 (93 pages).

VoPham, T.; Brooks, M.M.; Yuan, J.M.; Talbott, E.O.; Ruddell, D.; Hart, J.E.; Chang, C.C.; Weissfeld, J.L., (2015). Pesticide exposure and hepatocellular carcinoma risk: a case–control study using a geographic information system (GIS) to link SEER-Medicare and California pesticide data. Environ. Res., 143(Pt A):68–82 (15 pages).

VoPham, T.; Bertrand, K.A.; Hart, J.E.; Laden, F.; Brooks, M.M.; Yuan, J.M.; Talbott, E.O.; Ruddell, D.; Chang, C.C.H.; Weissfeld, J.L., (2017). Pesticide exposure and liver cancer: A review. Cancer Causes Control. 28(3):177-190 (14 pages).

 

HOW TO CITE THIS ARTICLE:

Alijani Ardeshir, R.; Zolgharnein, H,; Movahedinia, A.A.; Salamat, N.; Zabihi, E.; Regenstein, J., (2017). Intraperitoneal fipronil effects on liver histopathological, biochemistry and morphology in Caspian kutum, Rutilus frisii kutum (Kamenskii, 1901). Global J. Envirn. Sci. Manage., 3(4): 351-362 (12 pages).


Letters to Editor


GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.

CAPTCHA Image