Document Type: CASE STUDY


1 Department of Marine Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Iranian Fisheries Science Research Institute, Agricultural Research Education and Extension Organization, Tehran, Iran


The current study has determined the toxicity effects of copper nanoparticles on the some vital organs such as gill, liver and kidney of Caspian Roach; Rutillus rutillus caspicus. For this purpose, 120 fishes were used as experimental samples and exposed to 0.1, 0.2 and 0.5 mg/L of Cu nanoparticles for 21 days, and 30 fishes assumed as the experiment control. The mean water temperature of the aquaria was 22±2 ºC, dissolved oxygen 5.2 mg/L, pH at 7±0.004 and the concentration of calcium carbonate was 270 ppm. On 7, 14 and 21 days after exposing the fishes to copper nanoparticles, three fishes were randomly selected from each aquaria, sacrificed and samples from their gill, liver and kidney were taken and fixed in cold 10 % buffered formalin. Then microscopic sections were prepared and examined by light microscope which showed histological alternations in the gill, liver and kidney tissues. Evaluation of these changes could be useful in estimating the harmful effects of copper nanoparticles. Histological alternation in gills included: hyperplasia, fusion and detachment of secondary lamellae, blood congestion in vascular axis of primary filaments, reduced secondary lamellae length and cellular degeneration. Histological changes in liver included blood congestion in the central veins, cytoplasmic vacuolation of the hepatocytes, cellular degeneration and congestion in the blood sinusoids and necrosis of the hepatocytes. Histological changes in kidneys included glomerular shrinkage, severe degeneration in the tubules cells, interstitial tissue and glomerulus, increase in interstitial tissue cells and macrophages aggregation. The degree of damages was more intensive at higher copper nanoparticles concentrations. The result of the study showed that copper nanoparticles could cause severe damages in the vital tissues of Caspian roach; Rutillus rutillus caspicus and have lethal effects for fish.

Graphical Abstract


  • Applied CuNPs had negative effects on the gill and disturb respiration and osmoregulation
  • Applied CuNPs had negative effects on the kidney and disorganize excretion and urine production
  • Applied CuNPs had negative effects on the liver and disorder enzymes production and blood purification
  • CuNPs application could cause mortality in fish community.


Main Subjects

Abarghoei, S.; Hedayati, A.; Ghorbani, R.; Miandareh, H. K.; Bagheri, T., (2016). Histopathological effects of waterborne silver nanoparticles and silver salt on the gills and liver of goldfish Carassius auratus. Int. J. Environ. Sci. Tech., 13(7):1753-1760 (8 pages).

Abdelhamid, A.M.; El-Ayouty, S.A., (1991). Effect on catfish, Clarias lazera composition of ingestion rearing water contaminated with lead or aluminum compounds. Arch. Tierernahr., 41(7-8): 757-763 (8 pages).

Al-Bairuty, G.A.; Shaw, B.J.; Handy, R.D.; Henry, T.B., (2013). Histopathological effects of waterborne copper nanoparticles and copper sulphate on the organs of rainbow trout (Oncorhynchus mykiss). Aquat. Toxicol., 126: 104 –115 (12 pages).

Arellano, J.M.; Storch, V.; Sarasquete, C., (1999). Histological changes and copper accumulation in liver and gills of the Senegales sole, Solea senegalensis. Ecotoxicol. Environ. Saf., 44: 62-72 (11 pages).

Bilberg, K.; Malte, H.;Wang, T.; Baatrup, E., (2010). Silver nanoparticles and silver nitrate cause respiratory stress in Eurasian perch (Perca fluviatilis). Aquat. Toxicol., 96:159–165 (7 pages).

Braunbeck, T.; Storch, V.; Bresch, H., (1990). Species-specific reaction of liver ultrastructure in zebra fish, Brachydanio rerio and trout, Salmo gairdneri after prolonged exposure to 4-chloroaniline. Arch. Environ. Contam.Toxicol., 19: 405-418 (14 pages)

Bruslé, J.; Gonzalez, I.; Anadon, G., (1996). The structure and function of fish liver. In: Munshi JSD, Dutta HM (eds) Fish morphology. Science Publishers Inc., New York, 77–93 (17 pages).

Dutta, H.M.;, Munshi, J.S.D.; Roy, P.K.; Singh, N.K.; Adhikari, S.; Killius J., (1996) Ultrastructural changes in the respiratory lamellae of the catfish, Heteropneustes fossilis, after sublethal exposure to malathion. Environmental Pollution, 92: 329 – 341(13 pages).

Fernandes, M. N.; Mazon, A. F., (2003). Environmental pollution and fish gill morphology. Science Publishers, 203-231 (29 pages).

Figueiredo-Fernandes, A.; Ferreira-Cardoso, J. V.; Garcia-Santos, S.; Monteiro, S. M.; Carrola, J.; Matos, P.; Fontaínhas-Fernandes, A., (2007). Histopathological changes in liver and gill epithelium of Nile tilapia, Oreochromis niloticus exposed to waterborne copper. Pesq. Vet. Bras., 27(3): 103-109 (8 pages).

Gomes, T.; Pinheiro, J. P.; Cancio,  I.; Pereira, C. G.; Cardoso, C.; Bebianno, M., (2011). Effects of copper nanoparticles exposure in the mussel Mytilus galloprovincialis. Environ. Sci. Technol., 45 (21): 9356–9362 (7 pages).

Govindasamy, R.; Rahuman, A.A., (2012). Histopathological studies and oxidative stress of synthesized silver nanoparticles in Mozambique tilapia (Oreochromis mossambicus). J. Environ. Sci., 24: 1091–1098 (9 pages).

Gonzalez, P.; Baudrimont, M.; Boudou, A.; Bourdineaud, J.P., (2006). Comparative effects of direct cadmium contamination on gene expression in gills, liver, skeletal muscles and brain of the zebrafish; Danio rerio. Biometals, 19(3): 225–235(11 pages).

Griffitt, R.J.; Weil, R.; Hyndman, K.A.; Denslow, N.D.; Powers, K.; Taylor, D.; Barber, D.S., (2007). Exposure to copper nanoparticles causes gill injury and acute lethality in zebra fish (Danio rerio). Environ. Sci. Technol., 41: 8178-8186 (9 pages).

Hadi, A. A.; Alwan, S. F., (2012). Histopathological changes in gills, liver and kidney of fresh water fish, Tilapia zillii, exposed to aluminum. Int. J. Pharm. Life Sci., 3: 2071-2081 (11 pages).

Hinton, D.E.; & Lauren, D.J., (1990). Liver structural alterations accompanying chronic toxicity in fishes: potential biomarkers of exposure. In: Biomarkers of Environmental Contamination (Eds.), 17-52 (36 pages).

Hoseini, S. M.; Nodeh, A. J., (2012). Toxicity of copper and mercury to Caspian Roach Rutilus rutilus caspicus. J. Persian Gulf, 3 (9): 9 – 14 (6 pages).

Hua, J.; Vijver, M.G.; Ahmad, F.; Richardson, M.K.; Peijnenburg, W.J.G.M., (2014). Toxicity of different-sized copper nano- and submicron particles and their shed copper ions to zebrafish embryos. Environ. Toxicol. Chem., 33: 1774–1782 (9 pages).

Jinyuan, C.; Xia, D.; Yuanyuan, X.; Meirong, Z., (2011). Effects of titanium dioxide nano-particles on growth and some histological parameters of zebrafish (Danio rerio) after a long-term exposure. Aquat. Toxicol., 101(3-4): 493–499 (7 pages).

Kantham, K.P.; Richards, R.H., (1995). Effect of buffers on the gill structure of common carp, Cyprinus carpio and rainbow trout, Oncorhynchus mykiss. J. Fish Dis., 18: 411-423 (12 pages).

Karlsson, N.L.; Runn, P.; Haux, C.; Forlin, L., (1985). Cadmium induced changes in gill morphology of zebra fish, Brachydanio rerio and rainbow trout, Salmo gairdneri. J. Fish Biol., 27: 81-95 (15 pages).

Kelly, J.M.; Janz, D.M., (2009). Assessment of oxidative stress and histopathology in juvenile northern pike (Esox lucius) inhabiting lakes downstream of a uranium mill. Aquat. Toxicol., 92: 240–249 (10 pages).

Khanna, P.; Ong, C.; Bay, B. H.; Baeg, G. H., (2015). Nanotoxicity: An Interplay of Oxidative Stress, Inflammation and Cell Death. Nanomaterials, 5; 1163-1180 (18 pages)

Korai, A.K.; Lashari, KH.; Sahato, G.A.; Kazi, T.G., (2010). Histological lesions in gills of feral cyprinids, related to the uptake of waterborne toxicants from Keenjhar Lake. Fish Biol., 18:157-176 (20 pages).

Linhua, H.; Lei, C., (2012). Oxidative stress responses in different organs of carp (Cyprinus carpio) with exposure to ZnO nanoparticles. Ecotoxicol. Environ. Saf., 80: 103 –110 (8 pages).

Louei Monfared, A.; Bahrami, A.M.; Hoseini, E.; Soltani, S.; Shaddel, M., (2015). Effects of nano-particles on histo-pathological changes of the fish. J. Environ. Health Sci. Eng., 13: 62-72 (10 pages).

Mehndiratta, P.; Jain, A.; Srivastava, S.; Gupta, N., (2013). Environmental Pollution and Nanotechnology. Environment and Pollution, 2(2): 49–59 (11 pages).

Monfared, AL.; Soltani, S., (2013). Effects of silver nanoparticles administration on the liver of rainbowtrout (Oncorhynchus mykiss): histological and biochemical studies. Eur. J. Exp. Biol., 3(2): 285-289 (5 pages).

Ostaszewska, T.; Chojnacki, M.; Kamaszewski, M.; Sawosz-Chwalibóg, E., (2016). Histopathological effects of silver and copper nanoparticles on the epidermis, gills, and liver of Siberian sturgeon. Environ. Sci. Pollut. Res., 23: 1621–1633 (13 pages).

Roberts, R.J., (2001). Fish Pathology, 3rd edn. W.B. Saunders publishing, London, UK.

Saber, T.H., (2011). Histological Adaptation to Thermal Changes in Gills of Common Carp Fishes Cyprinus carpio L. Rafidain J. Sci., 22(1): 46- 55 (10 pages).

Sanad, S.M.; El-Nahass, E.M.; Abdel-Gawad, A.M.; Aldeeb, M., (1997). Histochemical studies on the liver of mice following chronic administration of sodium barbitone. J. Ger. Soc. Zool., 22(C): 127-165 (39 pages).

Shaw, B. J.; Handy, R. D., (2011). Physiological effects of nanoparticles on fish: a comparison of nanometals versus metal ions. Environ. Int., 37(6): 1083–1097 (15 pages).

Shaw, B. J.; Al-Bairuty, G.; Handy, R. D., (2012). Effects of waterborne copper nanoparticles and copper sulphate on rainbow trout, (Oncorhynchus mykiss):  physiology and accumulation. Aquat. Toxicol., 116: 90–101 (12 pages).

Takashima, F.; Hibiya, T., (1995). An atlas of fish histology. Normal and pathogical features. 2nd Ed. Tokyo, Kodansha Ltd.

Tang, S.; Wang, M.; Germ, K. E.; Du, H.M.; Sun, W. J.; Gao, W. M.; Mayer, G. D., (2015). Health implications of engineered nanoparticles in infants and children. World Journal of Pediatrics, 11(3): 197-206 (10 pages)

Thophon, S.; Kruatrachue, M.; Upathan, E. S.; Pokethitiyook, P.; Sahaphong, S.; Jarikhuan, S., (2003). Histopathological alterations of white seabass, Lates calcarifer in acute and subchronic cadmium exposure. Environ. Pollut., 121: 307-320 (14 pages).

Van Aken, B., (2015). Gene expression changes in plants and microorganisms exposed to nanomaterials.Current Opinion in Biotechnology, 33: 206–219 (14 pages).

Wang, T.; Long, X.; Cheng, Y.; Liu, Z.; Yan, S., (2014). The potential toxicity of copper nanoparticles and copper sulphate on juvenile Epinephelus coioides. Aquat. Toxicol., 152: 96 -104 (9 pageas).

Xu, P.; Xu, J.; Liu, S.; Yaug, Z., (2012). Nano copper induced apoptosis via increasing oxidative stress. J. Hazard. Mater., 241-242: 279-286 (8 pages).

Zhao, J.; Wang, Z.; Liu, X.; Xie, X.; Zhang, K.; Xing, B., (2014). Distribution of CuO nanoparticles in juvenile carp (Cyprinus carpio) and their potential toxicity. J. Hazard. Mater., 197: 304–310 (7 pages).



Aghamirkarimi, Sh.; Mashinchian Moradi, A.; Sharifpour, I.; Jamili, Sh.; Ghavam Mostafavi, P., (2017). Sublethal effects of copper nanoparticles on the histology of gill, liver and kidney of the Caspian roach, Rutilus rutilus caspicus. Global J. Environ. Sci. Manage., 3(3): 323-332.

Letters to Editor

GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.