Document Type: ORIGINAL RESEARCH PAPER

Authors

1 Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Department of Microbiology, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran

3 Extremophiles Laboratory, Department of Microbiology, Faculty of Biology, College of Sciences, University of Tehran, Tehran, Iran

4 Microbiology and Biotechnology Group, Research Institute of Petroleum Industry, Tehran, Iran

Abstract

Mud volcanoes are taken into consideration by geologists and oil industry experts have given their association with oil and gas reserves and methane greenhouse gas production in hydrosphere and atmosphere. Gomishan mud volcano phenomenon in the southeastern edge of the Caspian Sea, given its oil and gas resources, has been studied by some geologists in terms of geology and tectonics but not in terms of microbiology. Accordingly, it seems necessary to study this phenomenon from the perspective of microbiology in order to identify prokaryotes living in this area. Prokaryotes diversity in Mud volcano has been studied by cultivation techniques, fluorescence in situ hybridization, and denaturing gradient gel electrophoresis of PCR-amplified fragments of 16S rRNA genes. Total cell abundance in the mud volcano from 1×101-6×101per milliliter was determined by 4', 6-diamidino-2-phenylindole direct count. The detectable proportion of Archaea to Bacteria in the community by FISH was one to five. High viable counts (1 – 3 × 106) were obtained in culture media. A total of 122 isolates were obtained, 46 colonies were selected based on primarily morphological and physiological traits, and their 16S rRNA sequences were determined. The isolated genera included Halomonas (20%), Arthrobacter (5%), Kocuria (5%), Thalassobacillus (5%), Marinobacter (20%), Paracoccus (5%), Roseovarius (5%), Jeotgalicoccus (5%), Bacillus (15%), and Staphylococcus (15%). Regarding DGGE analysis, selected bands were obtained from the gels, reamplified and sequenced. Overall, 75% of the bacterial sequences were related to Rahnella and 25% related to Serratia.

Graphical Abstract

Highlights

  • Determination of bacterial diversity by different methods in Gomishan mud volcano
  • The difference results in a culture dependent method and DGGE
  • Combination of  culture-dependent and independent methods as the best way to biodiversity

Keywords

Main Subjects

Achtman, M.; Wagner, M., (2008). Microbial diversity and the genetic nature of microbial species.  Nature Rev. Microbiol., 6: 431-440 (10 pages).

Alain, K.; Querellou, J., (2009). Cultivating the uncultured: limits, advances, and future challenges. Extremophiles. 13(4): 583-594 (12 pages).

Amann, R.; Binder, B. J.; Olson, R. J.; Chisholm, S.W.; Devereux, R.; Stahl, D.A., (1990). The combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol., 56: 1919-1925 (7 pages).

Bharti P.K.; Niyogi, U.K., (2015). Plankton diversity and aquatic ecology of a freshwater lake (L3) at Bharti Island, Larsemann Hills, east Antarctica. Global J. Environ. Sci. Manage., 1(2): 137-144 (8 pages).

Bouvier, T.; Del Giorgio, P.A., (2003). Factors in£uencing the detection of bacterial cells using fluorescence in situ hybridization (FISH): A quantitative review of published reports. FEMS Microbiol. Ecol., 44: 3015.

Chen, J., (2009). The existence of microbial strain in Wu-Shan-Ding mud volcano and analysis for the microbial fuel cell. Poster presentation, 15-P, May 6-8, (in Chinese).

Chun, J.; Lee, J. H.; Jung,   Y.;  Kim,   M.; Kim,  S.; Kim, B.K.; Lim, Y.W. (2007). EzTaxon: A web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol., 57: 2259-2261 (3 pages).

Dimitrov, L. I., (2003). Mud volcanoes: A significant source of atmospheric methane. Geo-Mar Lett., 23: 155-161 (7 pages).

Elevi, B. R.; Oren, A., (2008). The sensitivity of Haloquadratum and Salinibacter to antibiotics and other inhibitors: implications for the assessment of the contribution of Archaea and Bacteria to heterotrophic activities in hypersaline environments. FEMS Microbiol. Ecol., 63: 309-315 (7 pages).

Gerhardt, P.; Murray, R.; Wood, W.; Krieg,   N., (1994). Methods for general and molecular bacteriology. Washington, D. C., American Society for Microbiology. 109-158 (50 pages).

Griffiths, B. S.; Römbke, J.; Schmelz, R. M.; Scheffczyk, A.; Faber, J. H.; Bloem, J.; Pérès, G.; Cluzeau, D.; Chabbi, A.; Suhadolc, M.; Sousa, J. P.; Martins da Silva, P. Carvalho, F.; Mendes, S. Morais, P., Francisco, R. R.; Pereira, C.; Bonkowski, M.; Geisen, S.; Bardgett, R.D.;  de Vries, F. T.; Bolger, T.; Dirilgen, T.; Schmidt, O.; Winding, A.; Hendriksen, B. N.; Johansen, A. ; Philippot, L.; Plassart, P.; Bru, D.; Thomson, B.; Griffiths, R. I.; Bailey, M. J.; Keith, A.; Rutgers, M.; Mulder, C.; Hannula, S. E.; Creamer, R.; Stone, D., (2016). Selecting cost effective and policy-relevant biological indicators for European monitoring of soil biodiversity and ecosystem function. Ecological Indicators., 69: 213-223 (145 pages).

Heller, C.; Blumenberg, M.; Kokoschka, S.; Wrede, Ch.; Hoppert, M.; Taviani, M.; Reitner, J., (2011).  Geomicrobiology of Fluid Venting Structures at the Salse diNirano Mud Volcano area in the Northern Apennines (Italy). In Lecture note in Earth Sci.; 131; 189-200; Kalkowsky, Symposium; Advances in Stromatolite Geobiology (22 pages).

Hughes, J.; Hellmann, J.; Ricketts, T.; Bohannan, B., (2001).Counting the uncountable: statistical approaches to estimating microbial diversity. Am Soc Microbiol., 34: 4399-4406 (8 pages).

Kopf, A. J., (2002). The significance of mud volcanism. Reviews of Geophysics., 40: 2.

Lane, D. J.; Pace, B.; Olsen, G. J.; Stahl, D.; Sogin, M.; Pace, N. R., (1985). Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. USA., 82: 6955-6959 (5 pages).

Lanoil, B.; Sassen, R.; La Duc, MT.; Sweet, ST., (2001). Bacteria and Archaea physically associated with Gulf of Mexico gas hydrates. Appl. Environ. Microbiol., 67: 5143–5153 (11 pages).

Milkov, A. V.; Vogt, P.R.; Crane, K.; Lein,  A.Y.; Sassen, R.; Cherkashev, G. A., (2004). Geological, geochemical, and microbial processes at the hydrate-bearing Haakon Mosby mud volcano: volcanoes. Chem. Geol., 205: 347–366 (20 pages).

Mutlu, M. B.; Martinez-Garcia, M.; Santos, F.; Pena, A.; Guven, K.; Anton, J., (2008). Prokaryotic diversity in Tuz Lake, a hypersaline environment in Inland Turkey. FEMS Microbiol. Ecol., 65: 474–483 (10 pages).

Muyzer, G.; Smalla, K., (1999). Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis in microbial ecology. Antonie van Leeuwenhoek., 73: 127-141 (15 pages).

Pachiadaki, M. G.; Lykousis V.; Stefano E.G.; Kormas K.A., (2010). Prokaryotic community structure and diversity in the sediments of an active submarine mud volcano (Kazan mud volcano, East Mediterranean Sea). FEMS. Microbiol. Ecol. 72: 429–444 (16 pages).

Sathyanarayana Reddy, G.; Chattopadhyay, M. K.; Shivaji, S., (2016). Biodiversity, Adaptation and Biotechnological Importance of Bacteria Occurring in Cold Climates. Biotechnology of Extremophiles: Advances and Challenges. P. H. Rampelotto. Cham, Springer International Publishing., 47-81 (35 pages).

Stackebrandt, E.; Ebers, J., (2006).Taxonomic parameters revisited: tarnished gold standards. Microbiol. Today., 33: 152 (1 page).

Stahl, D. A.; Amann, R., (1991). Development and application of nucleic acid probes in bacterial systematics. In E. Stackebrandt and M. Goodfellow (ed.), Nucleic acid techniques in bacterial systematics. John Wiley and Sons Ltd., Chichester, England., 205–248 (44 pages).

Suess, E.; Torres, ME.; Bohrmann,  G.; Collier,  RW.; Greinert,  J.; Linke, P.; Rehder, G.; Tréhu, A.; Wallmann, K.; Winckler, G.; Zuelger, E., (1999). Gas hydrate destabilization: Enhanced dewatering, benthic material turnover, and large methane plumes at the Cascadia convergent margin. Earth Planet Sci Lett., 170: 1-15 (15 pages).

Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S., (2013). MEGA6: Molecular evolutionary genetics analysis. Version 6.0. Mol Biol Evol., 30(12): 2725–2729 (5 pages).

Torsvik, V.; Goksoyr, J.; Daae, F.L., (1990). High diversity in DNA of soil bacteria. Appl. Environ. Microbiol., 56: 782-787 (6 pages).

Torsvik, V.; Ovreas, L.; Thingstad, T., (2002). Prokaryotic diversity-magnitude, dynamics, and controlling factors. 1064-1066 (3 pages).

Xie, Q.; Bai, S.; Li, Y.; Liu, L.; Wang, S.; Xi, J., (2016). Seasonal variations of the microbial community in a full-scale oil field produced water treatment plant. Global J. Environ. Sci. Manage., 2(1): 69-78 (10 pages).

Yang, H. M.; Lou, K.; Sun, J.; Zhang, T.; Ma, X.L., (2012). The prokaryotic diversity of an active mud volcano in the Usu City of Xinjiang, China.  J. Basic Appl. Microbiol., 52: 79-85 (7 pages).

Zemskaya, T. I.; Pogodaeva, T.V.; Shubenkova, O.V.; Chernitsina, S.M.; Dagurova, O.P.; Buryakhaev, S.P.; Namsaraev, B.B.; Khlystov, O.M.; Egorov,   A.V.; Krylov, A.A.; Kalmychkov, G.V., (2010). Geochemical and microbiological characteristics of sediments near the Malenky mud volcano (Lake Baikal, Russia), with evidence of Archaea intermediate between the marine anaerobic methanotrophs ANME-2 and ANME-3. Geo-Mar. Lett., 30: 411-425 (15 pages).

 

HOW TO CITE THIS ARTICLE:

Ghiasian, M.;  Akhavan Sepahy, A.; Amoozegar, M.A.; Saadatmand, S.; Shavandi, M., (2017). Bacterial diversity determination using culture-dependent and culture-independent methods. Global J. Environ. Sci. Manage., 3(2): 153-164 (10 pages).


Letters to Editor


GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.

CAPTCHA Image