Document Type : REVIEW PAPER


1 Caspian Faculty of Engineering, College of Engineering, University of Tehran, Rezvanshar, Guilan, Iran

2 Department of Environmental Engineering, Graduate Faculty of Environment, University of Tehran, Tehran, Iran


Due to its abundance and also flexibility of cultivation conditions, Chlorella vulgaris microalgae is one of the most ideal options available in order to production of microalgae based biodiesel. Since vulgaris cultivation for fuel production needs economic considerations to be taken, and in first place providing biomass and lipid production costs is important, wide researches have been conducted in this field, and this study aims to spot the best condition for cultivation of this valuable specie by reviewing the whole research conducted. So far, Researchers' efforts show that, the best condition for vulgaris cultivation is mixotrophic regime which is done in a bubble column photobioreactor. Glucose as carbonic source and nitrate as nitrogen source, have the most efficacy among nutrition conditions. It is known the best results obtain in amounts glucose and nitrate of 20 and o.5 g/L respectively. Alkaline medium (pH 9 to 10), non-continuous illumination, 5 to 7 Klux and a 200 mL/min aeration flow rate, indicated the best physical conditions. The most vulgaris biomass amount produced was 3.43 g/L, and the best lipid productivity was measured 66.25 mg/L/day.

Graphical Abstract

Investigation of optimal condition for Chlorella vulgaris microalgae growth


  • Best condition for vulgaris cultivation is mixotrophic regime
  • Glucose and potassium nitrate have the most efficacies among nutrition conditions.
  • Alkaline medium and 200 mL/min aeration indicated the best operational conditions.
  • The best lipid production efficiency was measured 66.25 mg/L/day


Al-lwayzy, S.H.; Yusaf, T.; Al-Juboori, R.A., (2014). Biofuels from the fresh water microalgae Chlorella vulgaris (FWM-CV) for diesel engines. Energies, 7(3): 1829-1851 (23 pages).

Al-Qasmi, M.; Raut, N.; Talebi, S.; Al-Rajhi, S.; Al-Barwani, T., (2012). A review of effect of light on microalgae growth.  Proceedings of the World Congress on Engineering. 4-6 (3 pages).

Al-Widyan, M.I.; Al-Shyoukh, A.O., (2002). Experimental evaluation of the transesterification of waste palm oil into biodiesel. Bioresour Tech., 85: 253–256 (4 pages).

Andrews, J.F., (1968). A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotech. Bioeng., 10(6): 707-723 (17 pages).

Antolin, G.; Tinaut, F.V.; Briceno, Y., (2002). Optimisation of biodiesel production by sunflower oil transesterification. Bioresour Tech., 83:111–114 (4 pages).

Barghbani, R.; Rezaei, K.; Javanshir, A., (2012). Investigating the effects of several parameters on the growth of Chlorella vulgaris using Taguchi's experimental approach. Int. J. Biotech. Wellness Ind., 1(2):128-133 (6 pages).

Benemann, J.R., (1997). CO2 mitigation with microalgae systems. Energy Conversion Manage., 38: S475-S9.

Blair, M.F.; Kokabian, B.; Gude, V.G., (2014). Light and growth medium effect on Chlorella vulgaris biomass production. J. Environ. Chem. Eng., 2(1): 665-674 (10 pages).

Blinova, A.; Bartosova, A.; Gerulova, K., (2015). Cultivatiiion of microalgea (Chlorella vulgaris) for biodiesel production, Faculty of Materials Science and Technology in Irnava Slovak University of Technology in Bratislava. 23(36).

Brody, M.; Vatter, A.E., (1959). Observations on cellular structures of Porphyridium cruentum. J. Biophys. Biochem. Cytol., 5(2): 289-294 (6 pages).

Bunyakiat, K.; Makmee, S.; Sawangkeaw, R.; Ngamprasertsith, S., (2006). Continuous production of biodiesel via transesterification from vegetable oil supercritical methanol. Energy Fuels., 20: 812–817 (6 pages).

Cadenas, A.; Cabezndo, S., (1998). Biofuels as sustainable technologies: perspectives for less developed countries. Tech. Forecast Soc. Change, 58: 83–103 (21 pages).

Campbell,  C.J., (1997). The coming oil crisis: Multi. Sci. Publishing., ISBN.906522110:73.

Campbell, P.K.; Beer, T.; Batten, D., (2011). Life cycle assessment of biodiesel production from microalgae in ponds. Bioresour. Tech., 102(1): 50-56 (7 pages).

Cao, H.; Zhang, Z; Wu, X.; Miao, X., (2013) Direct biodiesel production from wet microalgae biomass of Chlorella pyrenoidosa through in situ transesterification.  J. BioMed Res. Int., Article ID 930686 (6 pages).

Cassidy, K.O., (2011). Evaluating algal growth at different temperatures. Theses of Master of Science in Biosystems and Agricultural Engineering.

Chenl, Y.;Celia, D.G., (1994). Effects of pH on the growth and carbon uptake of marine phytoplankton. Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire. 3755: 83-94 (12 pages).

Chinnasamy, S.; Ramakrishnan, B.; Bhatnagar, A.; Das, K.C., (2009). Biomass production potential of a wastewater alga Chlorella vulgaris ARC 1 under elevated levels of CO2 and temperature. Int. J. Mol. Sci., 10(2): 518-532 (15 pages).

Chisti, Y., (2007). Biodiesel from microalgae. Biotechnol. Adv., 25(3): 294-306 (13 pages).

Chisti, Y., (2008). Biodiesel from microalgae beats bioethanol. Trends Biotechnol., 26(3): 126-131 (6 pages).

Converti, A.; Casazza, A.A,; Ortiz, E.Y.; Perego, P.; Del Borghi, M., (2009). Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemi. Eng. Process.: Process Intensif., 48(6): 1146-1151 (6 pages).

Corre, G.; Templier, J.; Largeau, C.; Rousseau, B.; Berkaloff, C., (1996). Influence of cell wall composition on the resistance of two Chlorella species (Chlorophyta) to detergents. J Phycol., 32: 584–590 (7 pages).

Dalir, F.;  Shafiepour Motlagh, M.; Ashrafi, K., (2007). Sensitivity analysis of parameters affecting carbon footprint of fossil fuel power plants based on life cycle assessment scenarios. Global J. Environ. Sci. Manage. 3(1): 75-88 (14 pages).

Dayananda, C.; Sarada, R.; Rani, M.U.; Shamala, T.; Ravishankar, G., (2007). Autotrophic cultivation of Botryococcus braunii for the production of hydrocarbons and exopolysaccharides in various media. Biomass Bioenergy, 31(1): 87-93 (7 pages).

De-Bashan, L.E.; Antoun, H.; Bashan, Y., (2005). Cultivation factors and population size control the uptake of nitrogen by the microalgae Chlorella vulgaris when interacting with the microalgae growth-promoting bacterium Azospirillum brasilense. FEMS Microbiol. Ecol., 54(2): 197-203 (7 pages).

Demirbas, A., (2009). Production of biodiesel from algae oils. Energy Sources Part a: Recovery Util. Environ. Eff., 31: 163-168 (6 pages).

De Morais, M.G.; Costa, J.A.V., (2007). Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. J. Biotech., 129(3): 439-445 (7 pages).

Dvoretsky, D.; Dvoretsky, S.; Peshkova, E.; Temnov, M., (2015). Optimization of the process of cultivation of microalgae Chlorella vulgaris biomass with high lipid content for biofuel production. Chem. Eng., Trans.  43: 361-366 (6 pages).

Faramarzi, M.A.; Forootanfar, H.; Shakibaie, M., (2010). Microalgal Biotechnology. Tehran University of Medical Sciences Publication. 23-42 (10 pages).

Erazo, J.; Sequera, A.; Parthasarathy, R.; Gollahalli, S., (2007). Comparison of spray characteristics of biodiesel and diesel fuel.  Proceedings of the 5th International Energy Conversion Engineering Conference and Exhibit, St Louis, MO, AIAA.

Fischer, G.; Schrattenholzer, L., (2001). Global bioenergy potential through 2050. Biomass Bioenergy, 20: 151–159 (9 pages).

Floder, S.; Hansen, T.; Ptacnik, R., (2006). Energy-dependent bacterivory in Ochromonas minima-a strategy promoting the use of substitutable resources and survival at insufficient light supply. Protist.,157: 291–302 (12 pages).

Foyer, C.H.; Ferrario-Méry, S.; Noctor, G., (2001). Interactions between carbon and nitrogen metabolism.  Plant Nitrogen: 237-254 (18 pages).

Fulton, L., (2004). Biomass and agriculture sustainability, markets and policies. Biofuels study–interim report: result and key messages so far. International Energy Agency France, OECD Publication Service., 105–112 (8 pages).

Hultberg, M.; Jönsson, H.L.; Bergstrand, K.J.; Carlsson, A.S., (2014). Impact of light quality on biomass production and fatty acid content in the microalga Chlorella vulgaris. Bioresour. Tech., 159: 465-467 (3 pages).

Golzary, A.; Imanian, S.; Abdoli, M.A.; Khodadadi, A.; Karbassi, A., (2015). A cost-effective strategy for marine microalgae separation by electro-coagulation–flotation process aimed at bio-crude oil production: Optimization and evaluation study. Sep. Purif. Tech., 147:156-165 (10 pages).

Gong, O.; Feng, Y.; Kang, L.; Luo, M.; Yang, J., (2014). Effect of light DND pH on cell density of Chlorella vulgaris. The 6th International Conference of Applied Energy ICAE2014.

González‐Fernández, C.; Sialve, B.; Bernet, N.; Steyer, J.P., (2012). Impact of microalgae characteristics on their conversion to biofuel. Part II: Focus on biomethane production. Biofuels Bioprod. Biorefin., 6(2): 205-218 (14 pages).

Gonzalez, L.E.; Bashan, Y., (2000). Increased gowth of the microalga Chlorella vulgaris when coimmobilized and cocultured in alginate beads with the plant growth promoting Bacterium azospirillum brasilense. Appl. Environ. Microbiol., 66(4): 1527-1531 (5 pages).

Gouveia, L.; Oliveira, A.C., (2009). Microalgae as a raw material for biofuels production. J. Ind. Microbiol. Biotechnol., 36(2): 269-274 (6 pages).

Griffiths, M.J.; Harrison, S.T., (2009).Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J. Appl. Phycol., 21(5): 493-507 (14 pages).

Jian-Ming, L.V.; Li-Hua, C.; Xin-Hua, X.; Lin, Z.; Huan-Lin, C., (2010). Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions, Bioresour. Tech., 101:6797–6804 (8 pages).

Hillig, F.; Pilarek, M.; Junne, S.; Neubauer, P., (2014). Cultivation of marine microorganism in single-use systems. Adv. Biochem. Eng. Biotech., 138: 179-206 (28 pages).

Hsieh C.H.; Wu, W.T., (2009). Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresour. Tech., 100: 3921–3926 (6 pages).

Ho, S.H.; Chen, C.Y.; Lee, D.J.; Chang, J.S., (2011). Perspectives on microalgal CO2 emission mitigation systems: A review. Biotech., Adv., 29(2): 189-198 (10 pages).

Hu, H.; Gao, K., (2003). Optimization of growth and fatty acid composition of a unicellular marine picoplankton, Nannochloropsis sp., with enriched carbon sources. Biotech., Lett., 25(5): 421-425 (5 pages).

Humphrey, A.M., (2004). Chlorophyll as a colour and functional ingredient. J. Food Sci., 69: 422–425 (4 pages).

Huppe, H.C.;d Turpin, D.H., ( 1994). Integration of carbon and nitrogen metabolism in plant and algal cells. Annu Rev. Plant Biol., 45 (1): 577–607 (31 pages).

Illman, A.; Scragg, A.; Shales, S., (2000). Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb. Tech., 27(8):631-635 (5 pages).

Khalil, Z.I.; Asker, M.M.; El-Sayed, S.; Kobbia, I.A., (2010). Effect of pH on growth and biochemical of Donaliella and Chlorella. World J. Microbiol. Biotech., 26: 1225-1231 (7 pages).

Khan, S.A.; Hussain, M.Z.; Prasad, S.; Banerjee, U., (2009). Prospects of biodiesel production from microalgae in India. Renewable Sustain. Energy Rev., 13(9): 2361-2372 (12 pages).

Khoeyi, Z.A.; Seyfabadi, J.; Ramezanpour, Z., (2012). Effect of light intensity and photoperiod on biomass and fatty acid composition of the microalgae, Chlorella vulgaris. Aquacult. Int., 20(1): 41-49 (9 pages).

Kim, D.G.; Lee, C.; Park, S.M.; Choi, Y.E., (2014). Manipulation of light wavelength at appropriate growth stage to enhance biomass productivity and fatty acid methyl ester yield using Chlorella vulgaris. Bioresour. Techn., 159: 240-248 (9 pages).

Kong, W.; Song, H.; Cao, Y.; Yang, H.; Hua, S.; Xia, C., (2011). The characteristics of biomass production, lipid accumulation and chlorophyll biosynthesis of Chlorella vulgaris under mixotrophic cultivation. African J. Biotech., 10(55): 11620-11630 (11 pages).

Konopka, A.; Brock, T.D., (1978). Effect of temperature on blue-green algae (cyanobacteria) in Lake Mendota. Appl. Environ.l Microbiol., 36(4): 572-576 (5 pages).

Kumar, A.; Ergas, S.; Yuan, X.; Sahu, A.; Zhang, Q.; Dewulf, J.; Malcata, F.X.; van Langenhove, H., (2010). Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotech., 28(7): 371-380 (10 pages).

Lavens, P.; Sorgeloos, P., (1996). Manual on the production and use of live food for aquaculture: Food Agriculture Organization Publication.

Li, J.; Jaitzig, J.; Hillig, F.; Süssmuth, R.; Neubauer, P., (2014). Enhanced production of the nonribosomal peptide antibiotic valinomycin in Escherichia coli through small-scale high cell density fed-batch cultivation.  Appl. Microbiol. Biotech., 98: 591-601 (11 pages).

Liang, Y.; Sarkany, N.; Cui, Y., (2009). Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotech. Lett., 31(7): 1043-1049 (7 pages).

Liu, Z.Y.; Wang G.C.; Zhou, B.C., (2008). Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour. Tech., 99(11): 4717-4722 (6 pages).

Long, S.; Humphries, S.; Falkowski, PG., (1994). Photoinhibition of photosynthesis in nature. Annu. Rev. Plant  Biol., 45(1): 633-662 (30 pages).

Lv, J.M.; Cheng, L-H.; Xu, X-H.; Zhang, L.; Chen, H-L., (2010). Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresource Tech.,101(17): 6797-6804 (8 pages).

Ma, F.; Hanna, M.A., (1999). Bidiesel production: A review. Bioresour. Tech., 70: 1–15 (15 pages).

Martinez, F.; Ascaso, C.; Orus, M., (1991). Morphometric and stereologic analysis of Chlorella vulgaris under heterotrophic growth conditions. Ann. Bot., 67(3): 239-245 (7 pages).

Mayo, A.W., (1997). Effects of temperature and pH on the kinetic growth of unialga Chlorella vulgaris cultures containing bacteria. Water Environ. Res., 69(1): 64–72 (8 pages).

Mitsui, A.; Miyachi, S.; San Pietro, A.; Tamura, S., (1997). Biological solar energy conversion. Papers presented at a conference sponsored by United States-Japan Cooperative Science Program, US National Science Foundation and the Japanese Society for Promotion of Science.

Molina Grima, E.; Fernandez Sevilla, J.; Aci´en Fern´andez, F.G.; Chisti, Y., (2001). Tubular photobioreactor design for algal cultures. J. Biotech., 92: 113–135 (23 pages).

Morris,  H.J.; Almarales, A.; Carrillo, O.; Bermudez, R.C., (2008). Utilisation ofChlorella vulgariscell biomass for the production of enzymatic protein hydrolysates. Bioresour Tech., 99:7723–9 (7714 pages).

Nakamura, Y.; Miyachi, S., (1982). Effect of temperature on starch degradation in Chlorella vulgaris 11h cells. Plant Cell Physiol., 23(2): 333-341 (9 pages).

Nishida, I; Murata, N., (1996). Chilling sensitivity in plants and cyanobacteria: The crucial contribution of membrane lipids. Annu. Rev. Plant Biol., 47(1): 541-568 (28 pages).

Ogawa, T.; Aiba, S., (1981). Bioenergetic analysis of mixotrophic growth in Chlorella vulgaris and Scenedesmus acutus. Biotech Bioeng., 23(5): 1121-1132 (12 pages).

Orcutt, D.M.; Patterson, G.W., (1974). Effect of light intensity upon lipid composition ofNitzschia closterium (Cylindrotheca fusiformis).  Lipids, 9(12): 1000-1003 (4 pages).

Ortiz Montoya, E.Y.; Casazza, A.A.; Aliakbarian, B.; Perego, P.; Converti, A.; de Carvalho, J.C.M., (2014). Production of Chlorella vulgaris as a source of essential fatty acids in a tubular photobioreactor continuously fed with air enriched with CO2 at different concentrations. Biotech. Prog., 30(4): 916-922 (7 pages).

Pagnanelli,  F.; Altimari, P.; Trabucco, F.; Toro, L., (2014). Mixotrophic growth of Chlorella vulgaris and Nannochloropsis oculata: Interaction between glucose and nitrate. J. Chem. Tech. Biotech., 89(5): 652-661 (10 pages).

Perez-Garcia, O.; Escalante, F.M.E.; de-Bashan, L.E.; Bashan, Y., (2011). Heterotrophic cultures of microalgae: Metabolism and potential products. Water Res., 45: 11–36 (26 pages).

Pienkos, P.T.; Darzins A., (2009). The promise and challenges of microalgal-derived biofuels. Biofuels Bioprod. Biorefin., 3: 431-440 (10 pages).

Pilarek, M.; Brand, E.; Hillig, F.; Krause, M.; Neubauer, P., (2013). Enhanced plasmid production in miniaturized high-cell-density cultures of Escherichia coli supported with per fluorinated oxygen carrier. Bioprocess Biosyst Eng., 36 (8): 1079-1086 (8 pages).

Posten, C., (2009). Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci. 9: 165–177 (13 pages).

Pyle, D.J.; Garcia, R.A.; Wen Z.Y., (2008). Producing docosahexaenoic acid (DHA)-rich algae from biodiesel-derived crude glycerol: effects of impurities on DHA production and algal biomass composition. J. Agric. Food Chem., 56: 3933–3939 (7 pages).

Richmond, A., (2004). Biological principles of mass cultivation. Handbook of micro algal culture: Biotech. Appl. Phycol., 125-177 (53 pages).

Rodolfi, L.; Chini Zittelli, G.; Bassi, N.; Padovani, G.; Biondi, N.; Bonini, G.; Tredici, M.R., (2009). Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low‐cost photobioreactor. Biotech. Bioeng., 102(1):100-112 (13 pages).

Ryan, L.; Convery, F.; Ferreira, S., (2006). Stimulating the use of biofuels in the European Union: implications for climate change policy. Energy Policy., 34: 3184–3194 (11 pages).

Ryu, H.J.; Oh, K.K.; Kim, Y.S., (2009). Optimization of the influential factors for the improvement of CO2 utilization efficiency and CO2 mass transfer rate. J. Indust. Eng. Chem., 15(4): 471–475 (5 pages).

Safi, C.; Zebib, B.; Merah, O.; Pontalier, P.Y.; Vaca-Garcia, C., (2014). Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renewable Sustainable Energy Rev., 35: 265-278 (14 pages).

Sayadi, M.N.;  Ahmadpour, N.; Fallahi Capoorchali, M.; Rezaei, M.R., (2016). Removal of nitrate and phosphate from aqueous solutions by microalgae: An experimental study. Global J. Environ. Sci. Manage., 2(4): 357-364 (8 pages).         

Scarsella, M.; Belotti, G.; De Filippis, P.; Bravi, M., (2010). Study on the optimal growing conditions of Chlorella vulgaris in bubble column photobioreactors. Chem. Eng., 20: 85-90 (6 pages).

Schenk, P.M.; Thomas-Hall, S.R.; Stephens, E.; Marx, U.C.; Mussgnug, J.H.; Posten, C.; Kruse, O.; Hankamer, B., (2008). Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res., 1(1): 20-43 (23 pages).

Sheehan, J.; Cambreco Duffield, J.; Graboski, M.; Shapouri, H., (1998). An overview of biodiesel and petroleum diesel life cycles. US Department of agriculture and Energy Report., 1–35 (35 pages).

Sheehan, J.; Dunahay, T.; Benemann, J.; Roessler, P., (1998). A look back at the U.S. Department of Energy’s aquatic species program: biodiesel from algae. National Renewable Energy Laboratory, NREL/TP-580-24190, USA

Shenm Y,; Yuanm W,; Pei. Z.; Mao, E., (2008). Culture of microalga Botryococcus in livestock wastewater. Trans ASABE., 51: 1395–1400 (6 pages).

Spolaore, P.; Joannis-Cassan, C.; Duran, E.; Isambert, A., (2006). Commercial application of microalgae. J. Biosci. Bioeng., 101: 87–96 (10 pages).

Song, D.; Fu, J.; Shi, D., (2008). Exploitation of oil-bearing microalgae for biodiesel. China J. Biotech., 24: 341–348 (8 pages).

Ugwu, C.U.; Aoyagi, H., (2012). Microalgal culture systems: an insight into their designs, operation and applications. Biotech., 11(3): 127-132 (6 pages).

Veillette, M.; Nikiema, J.; Heitz, M.; Chamoumi, M.; Faucheux, N., (2012). Production of biodiesel from microalgae: INTECH Open Access Publisher.

Vicente, G.; Martinez, M.; Aracil, J., (2004). Integrated biodiesel production: a comparison of different homogeneous catalysts systems. Bioresour. Tech., 92: 297–305 (9 pages).

Wang, C.Y.; Fu, C.C.; Liu, Y.C., (2007). Effects of using light-emitting diodes on the cultivation of Spirulina platensis. J. Biochem. Eng., 37(1): 21-25 (5 pages).

Wen, Z.Y.; Chen, F., (2001). Optimization of nitrogen sources for heterotrophic production of eicosapentaenoic acid by the diatom Nitzschia laevis. Enzyme Microbiol. Tech., 29: 341–347 (7 pages).

Widjaja , A.; Chien, C.C.; Ju, Y.H., (2009). Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J. Taiwan Inst. Chem. Eng., 40: 13–20 (8 pages).

Xu, H.; Miao, X.; Wu, Q., (2006). High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters.  J. Biotech., 126: 499–507 (9 pages).

Xu, N.J.; Zhang, X.C.; Fan, X.; Han, L.J.; Zeng, C.K., (2001). Effects of nitrogen source and concentration on growth rate and fatty acid composition of Ellipsoidion sp. (Eustigmatophyta).  J. Appl. Phycol.,13: 463–469 (7 pages).

Yamamoto, M.; Fujishita, M.; Hirata, A.; Kawano, S., (2004). Regeneration and maturation of daughter cell walls in the autospore-forming green alga Chlorella vulgaris (Chlorophyta, Trebouxiophyceae). J. Plant Res.,117(4): 257-264 (8 pages).

Yamamoto, M.; Kurihara, I.; Kawano, S., (2005). Late type of daughter cell wall synthesis in one of the Chlorellaceae, Parachlorella kessleri (Chlorophyta, Trebouxiophyceae). Planta., 221(6): 766-775 (10 pages).

Yamane, Y.; Utsunomiya, T.; Watanabe, M.; Sasaki, K., (2001). Biomass production in mixotrophic culture of Euglena gracilis under acidic condition and its growth energetics. Biotech. Lett., 23: 1223–1228 (6 pages).

Yan, C.; Zhang, L.; Xingzhang, L.; Zheng, Z., (2013). Effects of various LED light wavelengths and intensities on the performance of purifying synthetic domestic sewage by microalgae at different influent C/N ratios. Ecol. Eng., 51: 24–32 (9 pages).

Yeh, K.L.; Chang, J.S., (2011). Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalgae Chlorella vulgaris ESP-31: Implications for biofuels. J.Biotech., 6: 1358–1366 (9 pages).

Yu, G.C.; Xin, X.F.; Cai, Z.L.; Shi, D.J.; Ouyang, F., (2000). Mixotrophic cultures of anabaena sp. PCC7120. Eng. Chem. Metal. (Chinese) 21: 52–57 (6 pages).

Zehnder, A.; Gorham, P.R., (1960). Factors influencing the growth of Microcystis aeruginosa Kütz. Emend. Elenkin. Can. J. Microbiol., 6(6): 645-660 (16 pages).

Zeng, Y.; Ji, X.J.; Lian, M.; Ren, L.J.; Jin, L.J.; Ouyang, P.K.; Huang, H., (2011). Development of a temperature shift strategy for efficient docosahexaenoic acid production by a marine fungoid protist, Schizochytrium sp. HX-308. Appl. Biochem. Biotech.,164(3): 249-255 (7 pages).

Letters to Editor

GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.