Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People’s Republic of China


The distribution of extracellular enzyme activities in particle-size fractions of sediments was investigated in a subtropical mangrove ecosystem. Five enzymes involved in carbon (C), nitrogen (N), and phosphorus (P) cycling were analyzed in the sand, silt, and clay of sediments. Among these fractions, the highest activities of phenol oxidase (PHO), β-D glucosidase (GLU), and N-acetyl-glucosiminidase (NAG) were found in sand, and greater than bulk sediments of both intertidal zone (IZ) and mangrove forest (MG). This result implied that sand fractions might protect selective enzymes through the adsorption without affecting their activities. Additionally, the enzyme-based resource allocation in various particle-size fractions demonstrated that nutirents availability varied with different particle-size fractions and only sand fraction of MG with highest total C showed high N and P availability among fractions. Besides, the analysis between elemental contents and enzymes activities in particle-size fractions suggested that enzymes could monitor the changes of nutrients availability and be good indicators of ecosystem responses to environmental changes. Thus, these results provided a means to assess the availability of different nutrients (C, N, and P) during decomposition of sediment organic matter (SOM), and thus helping to better manage the subtropical mangrove ecosystems to sequester C into SOM.


Allison, S.D., (2006). Soil minerals and humic acids alter enzyme stability: implication for ecosystem processes. Biogeochemistry, (81): 361-373 (13 pages).
Allison, S.; Jastrow J.D., (2006). Activities of extracellular enzymes in physically isolated fractions of restored grassland soils. Soil. Biol. Biochem., (38): 3245-3256 (12 pages).
Allison, V.J.; Condron, L.M.; Peltzer, D. A.; Richardson, S. J.; Turner B. L., (2007). Changes in enzyme activities and soil microbial community composition along carbon and nutrient gradients at the Franz Josef chronosequence, New Zealand. Soil. Biol. Biochem., (39): 1770-1781(12 pages).
Alongi, D.M., (2011) Carbon payments for mangrove conservation: ecosystem constraints and uncertainties of sequestration potential. Environ. Sci. Policy., (14): 462-470 (9 pages).
Ayuso, S.V.; Guerrero, M.C.; Montes, C.; Lüpez-Archilla, I., (2011). Regulation and spatiotemporal patterns of extracellular enzyme activities in a coastal, sandy aquifer system (Doñana, SW Spain). Microb. Ecol.,( 62): 162-176 (15 pages).
Bol, R.; Poirier, N.; Balesdent, R.; Gleixner, G., (2009). Molecular turnover time of soil organic matter in particle- size fractions of an arable soil. Rapid. Commun. Mass. Sp., (23): 2551-2558 (8 pages).
Bouillon, S.; Dehairs, F.; Velimirov, B.; Abril, G.; Borges, A.V., (2007). Dynamics of organic and inorganic carbon across contiguous mangrove and seagrass systems (Gazi Bay, Kenya), J. Geophys. Res., 112 (G02018): 1-14 (14 pages).
Bouillon, S.; Borges, A.V.; Castan½da-Moya, E.; Diele, K.;Dittmar, T.; Duke, N.C.; Kristensen, E.; Lee, S.Y.; Marchand, C.; Middelburg, J.J.; Rivera-Monroy, V. H.; Smith III, T. J.; Twilley,R. R., (2008). Mangrove production and carbon sinks: A revision of global budget estimates. Global Biogeochem Cy, 22 (GB2013): 1-12 (12 pages).
Cao, H. L.; Li, M.; Hong, Y. G.; Gu, J-D., (2011). Diversity and abundance of ammonia-oxidizing archaea and bacteria in polluted mangrove sediment. Syst. Appl. Microbiol., (34): 513-523 (11 pages).
Cheng, F.S.; Zeng, D.H.; Fahey, T. J.; Liao, P. F., (2010). Organic carbon in soil physical fractions under differentaged plantations of Mongolian pine in semi-arid region of Northeast China. Appl. Soil. Ecol., (44): 42-48 (7 pages).
Dick, R. P., (2011). Methods of soil enzymology, 1rd. Ed. Soil Science Society of America, Madison.
Grandy, A.S.; Sinsabaugh, R. L.; Neff, J.C.; Stursova, M.; Zak, D.R., (2008). Nitrogen deposition effects on soil organic matter chemistry are linked to variation in enzymes, ecosystems and size fractions. Biogeochemistry, (91): 37-49 (13 pages).
Kandeler, E.; Palli, S.; Stemmer, M.; Gerzabek, M. H., (1999). Tillage changes microbial biomass and enzyme activities in particle-size fractions of a Haplic Chernozem. Soil. Biol. Biochem., (31): 1253-1264 (12 pages).
Kristensen, E.; Bouillon, S.; Dittmar, T.; Marchand, C., (2008). Organic carbon dynamics in mangrove ecosystems: A review. Aquat. Bot., (89): 201-219 (20 pages).
Lagomarsino, A.; Grego, S.; Kandeler, E., (2012). Soil organic carbon distribution drives microbial activity and functional diversity in particle and aggregate-size fractions. Pedobiologia, (55): 101-110 (10 pages).
Li, M.; Cao, H. L.; Hong, Y. G.; Gu, J-D., (2011). Seasonal dynamics of anammox bacteria in estuarial sediment of the Mai Po Nature Reserve revealed by analyzing the 16S rRNA and hydrazine oxidoreductase (hzo) genes. Microbes. Environ., 26(1):15-22 (8 pages).
Manju, M. N.; Resmi, P.; Gireesh Kumar, T. R.; Ratheesh Kumar, C.S.; Rahul, R.; Joseph, M.M.; Chandramohanakumar, N., (2012). Assessment of water quality parameters in mangrove ecosystems along Kerala Coast: A statistical approach. Int. J. Environ. Res., 6 (4): 893-902 (10 pages).
Marhan, S.; Kandeler, E.; Scheu, S., (2007). Phospholipid fatty acid profiles and xylanase activity in particle size fractions of forest soil and casts of Lumbricus terrestris L. (Oligochaeta, Lumbricidae). Appl. Soil. Ecol., (35): 412-422 (11 pages).
Marx, M.C.; Kandeler, E.; Wood, M.; Wermbter, N.; Jarvis, S.C., (2005). Exploring the enzymatic landscape: distribution and kinetics of hydrolytic enzymes in soil particle-size fractions. Soil. Biol. Biochem., (37): 35-48 (14 pages).
Mohebbi Nozar, S. L.; Ismail, W. R.; Pauzi Zakaria, M.; Seddiq Mortazawi, M., (2013). PCBs and DDTs in Surface Mangrove Sediments from the South of Iran. Int. J. Environ. Res. 7 (3): 817-822 (6 pages).
Nadeau, J. A.; Qualls, R. G.; Nowak, R. S.; Blank, R. R., (2007). The potential bioavailability of organic C, N, and P through enzyme hydrolysis in soils of the Mojave Desert. Biogeochemistry, (82): 305-320 (16 pages).
Nie, M.; Pendall, E.; Bell, C.; Wallenstein, M. D., (2014). Soil aggregate size distribution mediates microbial climate change feedbacks. Soil. Biol. Biochem., (68): 357-365 (9 pages).
Penton, C. R.; Newman, S., (2007). Enzyme activity responses to nutrient loading in subtropical wetlands. Biogeochemistry, (84): 83-98 (16 pages).
Penton, C. R.; Newman, S., (2008). Enzyme-based resource allocated decomposition and landscape heterogeneity in the Florida Everglades. J. Environ. Qual., (37): 972-976 (5 pages).
Qing, G. H.; Walter, J.; Weber, J. R., (2004). Peroxidase-catalyzed coupling of phenol in the presence of model inorganic and organic solid phases. Environ. Sci. Technol., (28): 5238-5245 (8 pages).
Rao, M.A.; Violante, A.; Gianfreda, L., (2000). Interaction of acid phosphotase with clays, organic molecules and organo-mineral complexes: kinetics and stability. Soil. Biol. Biochem., (32): 1007-1014 (8 pages).
Rezende, C. E.; Lacerda, L. D.; Ovalle, A. R. C.; Silva, C. A. R.; Martinelli, L. A., (1990). Nature of POC transport in mangrove ecosystem: A carbon stable isotopic study. Est. Coast. Shelf Sci., (30): 641-645 (5 pages).
Rojo, M. J.; Carcedo, S. G.; Mateos, M. P., (1990). Distribution and characterization of phophatase and organic phosphorus in soil fractions. Soil. Biol. Biochem., (22): 169-174 (6 pages).
Ruban, V.; Brigault, S.; Demare, D.; Philippe, A. M., (1999). An investigation of the origin and mobility of phosphorus in freshwater sediments from Bort-Les-Orgues Reservoir, France. J. Environ. Monitor., (1): 403-407 (5 pages).
Salazar, S.; Sánchez, L. E.; Alvarez, J.; Valverde, A.; Galindo, P.; Igual, J. M.; Peix, A.; Santa-Regina, I., (2011). Correlation among soil enzyme activities under different forest system management practices. Ecol. Eng., (37): 1123-1131 (9 pages).
Sinsabaugh, R. L., (2010). Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil. Biol. Biochem., (42): 391- 404 (14 pages).
Sinsabaugh, R. L.; Carreiro, M. M.; Repert, D. A., (2002). Allocation of extracellular enzymatic activity in relation to litter decomposition, N deposition, and mass loss. Biogeochemistry, (60): 1-24 (24 pages).
Sinsabaugh, R.L.; Findlay, S., (1995). Microbial production, enzyme activity, and carbon turnover in surface sediments of the Hudson River estuary. Microb. Ecol., (30): 127-141 (15 pages).
Sinsabaugh, R. L.; Hill, B. H.; Follstad Shah, J. J., (2009). Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature, (462): 795-798 (4 pages).
Sinsabaugh, R.L.; Moorhead, D. L., (1994). Resource allocation to extracellular enzyme production: A model for nitrogen and phosphorus control of litter decomposition. Soil. Biol. Biochem., (26): 1305-1311 (9 pages).
Six, J.; Conant, R.T.; Paul, E. A.; Paustian, K., (2002). Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant. Soil., (241): 155-176 (22 pages).
Stemmer, M.; Gerzabek, M. H.; Kandeler, E., (1998). Organic matter and enzyme activity in particle-size fractions obtained after low-energy sonication. Soil. Biol. Biochem., (30): 9-17 (9 pages).
Toberman, H.; Evans, C. D.; Freeman, C.; Fenner, N.; White, M.; Bridget, A.; Emmett, B. A.; Artz, R. R. E., (2008). Summer drought effects upon soil and litter extracellular phenol oxidase activity and soluble carbon release in an upland calluna heathland. Soil. Biol. Biochem., (40): 1519-1532 (14 pages).
Tue, N.T.; Ngoc, N.T.; Quy, T. D.; Hamaoka, H.; Nhuan, M.T.; Omori, K., (2012). A cross-system analysis of sedimentary organic carbon in the mangrove ecosystems of Xuan Thuy National Park, Vietnam. J. Sea. Res., (67): 69-76 (8 pages).
Waring, B.G.; Weintraub, S. R.; Sinsabaugh, R. L., (2014). Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils. Biogeochemistry, (117): 101-113 (13 pages).
Yang, X. M.; Xie, H.T.; Deury, C.F.; Reynolds, W. D.; Yang, J.Y.; Zhang, X. D., (2012). Determination of organic carbon and nitrogen in particulate organic matter and particle size fractions of Brookston clay loam soil using infrared spectroscopy. Eur. J. Soil. Sci., (63): 177-188 (11 pages).
Zavarzina, A. G., (2011). Heterophase synthesis of humic acids in soils by immobilized phenol oxidase, in: Shukla, G., Verma, A. (Eds), Soil Enzymology, Soil Biology. Springer Berlin Heidelberg, Berlin.
Zhang, J. P.; Shen, C. D.; Ren, H.; Han, W. D., (2012). Estimating change in sedimentary organic carbon content during mangrove restoration in southern china using carbon isotopic measurements. Pedosphere, 22(1): 58-66 (9 pages).
Allison S.D. (2006). Soil minerals and humic acids alter enzyme stability: implication for ecosystem processes.. Biogeochemistry. 81, 361-373

Letters to Editor

GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.