1 Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, 23111 Banda Aceh, Indonesia

2 Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, 23111 Banda Aceh, Indonesia

3 Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, 23111 Banda Aceh, Indonesia

4 Department of Physics, Faculty of Education, University of Fukui 3-9-1, Bunkyo, Fukui 910-8507, Japan


BACKGROUND AND OBJECTIVES: The catastrophic 2004 Indian Ocean tsunami left a profound mark, triggering significant contamination of organic and inorganic chemical components in the water and soil of affected regions. The effects of the tragedy, which occurred almost twenty years ago, are still evident in the soil as salt and metal pollutants continue to linger. It is crucial to conduct a chemical analysis of the soil samples obtained from the regions affected by the Indian Ocean tsunami in 2004. This not only aids in identifying areas hit by the catastrophe but also facilitates periodic monitoring of chemical contamination levels. This study aims to promptly detect and measure chemical indicators in soil samples collected from areas in Aceh Province that were impacted by the 2004 Indian Ocean tsunami.
METHODS: Three regions in Aceh Province, specifically Banda Aceh, Aceh Besar, and Aceh Barat, were selected for the collection of soil samples following severe impact from a tsunami. Soil samples were obtained from regions unaffected by the tsunami, including Tungkob, Blang Bintang, and Pango Deah. Plasma was produced by concentrating a pulsed carbon dioxide laser beam on the surface samples. An optical multichannel analyzer captures plasma emissions with a spectrograph and photodiode array. Data is stored for processing with SpectraView software and compared with the National Institute of Standards and Technology database for identification.
FINDINGS: The utilization of a pulsed carbon dioxide laser for analysis revealed its superior ability to identify a wider array of elements with high intensity-to-background ratios, particularly excelling in the detection of zinc, chromium, copper, cobalt, and nickel compared to the neodymium-doped yttrium aluminum garnet laser. Chemical quantification through calibration-free laser-induced breakdown spectroscopy closely correlated with x-ray fluorescence but surpassed x-ray fluorescence in rapid detection and identification of lighter elements. The concentrations of salt components and particular heavy metals in soil that was impacted by a tsunami exhibited a more than tenfold increase in comparison to soil that was not affected and was collected in 2006. Sodium surged from 0.02 percent to 4.18 - 4.95 percent, while calcium increased from 0.46 percent to 11.26 - 13.53 percent. Potassium concentration rose from 0.11 percent to 5.50 - 6.96 percent, alongside magnesium, which increased from 0.36 percent to 7.62 - 8.67 percent.
CONCLUSION: The utilization of a pulsed carbon dioxide laser-induced breakdown spectroscopy has demonstrated remarkable proficiency in the identification of a diverse range of elements. This technique has surpassed conventional methods like neodymium-doped yttrium aluminum garnet laser-induced breakdown spectroscopy, energy dispersive spectroscopy, and x-ray fluorescence in terms of its detection capabilities. This study underscores the potential of a pulsed carbon dioxide laser as a versatile and reliable method for qualitative and quantitative analysis of soils from 2004 Indian Ocean tsunami-affected regions in Aceh Province, emphasizing its significance for environmental monitoring in disaster-affected areas.

Graphical Abstract

A pulsed carbon dioxide laser-induced breakdown analysis for chemical profile of tsunami-affected soil


  • A pulsed carbon dioxide laser-induced breakdown spectroscopy (CO2 LIBS) technique demonstrates the ability to identify a wide range of elemental emission lines with high intensity-to-background ratios compared to the Nd-YAG laser;
  • A CO2 LIBS excels in detecting specific metal emission lines such as Zn, Cr, Cu, Co, and Ni compared to Nd-YAG LIBS;
  • The calibration-free laser-induced breakdown spectroscopy (CF-LIBS) method exhibits a strong correlation with X-ray fluorescence (XRF) outcomes, yet it surpasses XRF in swiftly detecting specific metal elements and identifying lighter ones;
  • The emission intensity ratios including Na/Ti, Ca/Ti, Mg/Ti, Si/Ti, Ca/Fe, Ca/Mg, and Ca/K stand out as promising chemical indicators for discerning between tsunami-affected and unaffected soils in Aceh Province.


Main Subjects


©2024 The author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit:


GJESM Publisher remains neutral concerning jurisdictional claims in published maps and institutional affiliations.


Google Scholar Scopus Web of Science PlumX Metrics Altmetrics Mendeley |


GJESM Publisher

Yu, K.; Ren, J.; Zhao, Y., (2020). Principles, developments and applications of laser-induced breakdown spectroscopy in agriculture: A review. Artif. Intell. Agric., 4: 127–139 (13 pages).

Letters to Editor

GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.