Document Type : ORIGINAL RESEARCH ARTICLE

Authors

Department of Forestry, Faculty of Forestry, Tadulako University, Jl. Soekarno Hatta, Tondo, District. Mantikulore, Palu City, Central Sulawesi 94148, Indonesia

10.22034/gjesm.2024.03.06

Abstract

BACKGROUND AND OBJECTIVES: Peak flow in watershed is important in designing and controlling soil erosion, as well as assessing the potential water yield. It also serves as a basis for assessing and managing the risk of environmental damage. However, there is no accurate information on peak flow to ensure sustainable management and conservation of Wuno Sub-Watershed in Palu Watershed which serves as a buffer for the capital of Central Sulawesi Province. Therefore, this study aimed to assess and determine the potential runoff and peak flows in watershed using soil conservation service-curve number.
METHODS: Soil conservation service-curve number method was calculated to analyze rainfall from runoff as a function of cumulative rainfall, land use, soil type, and humidity. This method was developed by the United States Soil Conservation Service in 1972 and applied in this study with due consideration for several variables, including (a) land use classification and intensity for settlements, rice fields, plantations, rivers, etc., (b) basic physical conditions of the area such as rainfall and hydrology, as well as (c) classes of soil hydrology significantly influencing carbon-nitrogen value.
FINDINGS: The result showed that carbón-nitrogen values for all types of land use or cover were in normal conditions from 5 to 25 years. Moreover, carbón-nitrogen range was observed to have significantly large quantitative consequences on direct runoff. The trend showed the need for precision and effectiveness in planning watershed management and conservation. Soil conservation service also had a positive influence on land use, specifically runoff, as observed in carbón-nitrogen values for return periods of 2, 5, 25, and 100 years. However, several other factors were identified to influence land use such as land cover and soil texture.
CONCLUSION: Soil Conservation Service presented an analysis of how land use affected runoff, specifically with a focus on carbon-nitrogen values. Land use was not only affected by carbon-nitrogen values but other factors such as land cover and geomorphometric properties. The trend showed the need for a more comprehensive exploration of soil conservation service-curve number method in accurately predicting runoff patterns in sub-watershed areas to ensure effective and sustainable management and conservation practices. 

Graphical Abstract

Estimation of peak current as a basis for sustainable watershed conservation using the number-curve land conservation

Highlights

  • Soil conservation service provided an overview of a positive influence on land use;
  • The potential for runoff and peak flow using SCS-CN method is the basis for watershed management and conservation;
  • Peak current provide an overview and strategy for controlling soil erosion and assessing water yield potential;
  • CN values in all areas of Wuno Sub-Watershed were in the normal range of 5 to 25 for all types of land use/ land cover.

Keywords

Main Subjects

OPEN ACCESS

©2024 The author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit: 

http://creativecommons.org/licenses/by/4.0/

PUBLISHER NOTE

GJESM Publisher remains neutral concerning jurisdictional claims in published maps and institutional affiliations.

CITATION METRICS & CAPTURES

Google Scholar Scopus Web of Science PlumX Metrics Altmetrics Mendeley |

CURRENT PUBLISHER

GJESM Publisher

Letters to Editor

GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.

CAPTCHA Image