Document Type : ORIGINAL RESEARCH ARTICLE

Authors

1 Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia

2 Department of Mathematics, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia

3 Department of Aquaculture, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia

4 Research Center for Marine Sciences and Fisheries, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia

5 Department of Marine Sciences, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia

10.22034/gjesm.2024.03.04

Abstract

BACKGROUND AND OBJECTIVES: Understanding the correlation between tidal rhythms and marine organism behavior is crucial. This extends beyond fluctuations in chlorophyll a concentrations and includes various biological processes in the marine environment. Awareness is key for a comprehensive perspective on the role of tidal forces, affecting ocean’s physical aspects and life form diversity. This study aims to explore the complex relationship between tidal movements and chlorophyll a concentrations in the northern Bay of Bengal, focusing on how tidal rhythms affect chlorophyll a concentrations.
METHODS: The analyzed variables include tidal parameters, such as lunar semidiurnal tidal characteristics and Simpson–Hunter parameters, as well as sea level, tidal current, and current magnitude, obtained from the tidal model driver. Additionally, hourly chlorophyll a data for January 2022 were acquired from the geostationary meteorological satellite Himawari-8, and the rate of change of chlorophyll a was determined through chlorophyll a calculations. This study employs wavelet analysis, applying continuous wavelet transform and wavelet transform coherence for chlorophyll a, rate of change of chlorophyll a, sea level, tidal current, and current magnitude, to explore oscillation patterns and temporal correlations within the marine ecosystem of the northern Bay of Bengal.
FINDINGS: Lunar semidiurnal tidal amplitudes increase toward the north, peaking at the Sagar and Ramree Islands, and tidal phases rise from south to northeast. Most of the bay, categorized by <0.25 Formzahl values, experiences semidiurnal tides. Surface lunar semidiurnal elliptic currents, stronger in the north and east, flow clockwise and turn counterclockwise toward the south. The Simpson–Hunter parameter indicates heightened tidal mixing, particularly along the northern and eastern coasts. Region 2 showed the highest mean chlorophyll a concentration (12.58 milligram per cubic meter), whereas Region 1 showed the lowest mean chlorophyll a concentration (0.79 milligram per cubic meter). Similar trends were observed for tidal current and current magnitude. The continuous wavelet transform analysis provides data on chlorophyll a and the rate of change of chlorophyll a within 6, 12, and 24 hour, sea level changes within 8–16 hours, and consistent tidal effects on tidal current and current magnitude in the range of 5–7 hour. The wavelet transform coherence analysis highlights the relationships between chlorophyll a and sea level over 12- and 24- hour periods and between chlorophyll a and current magnitude. Furthermore, the wavelet transform coherence analysis examines the rate of change in chlorophyll a in relation to tidal currents over 6, 12, and 24 hour.
CONCLUSION: Tides remarkably affect chlorophyll a concentrations. There are strong links between chlorophyll a concentrations and key tidal aspects, such as sea level and current magnitude. Higher tidal variables correlate with increased chlorophyll a concentrations and are related to the Simpson–Hunter parameter, indicating that regions with vigorous mixing show higher chlorophyll a concentrations. This finding highlights the major role of tidal forces and variations in the chlorophyll a concentrations in the Bay of Bengal. The wavelet transform coherence analysis of chlorophyll a, sea level, and current magnitude data in Regions 1, 2, and 3 show notable coherence in all areas. 

Graphical Abstract

Patterns and wavelet coherence analysis of tidal dynamics and chlorophyll a concentration

Highlights

  • This study examines the relationship between tides and chlorophyll a (Chl-a) concentrations in the northern Bay of Bengal and observes a strong connection with tidal variables.
  • Higher tidal variables, such as sea level, tidal current, and current magnitude, are associated with increased Chl-a
  • Wavelet transform coherence analysis shows a complex and coherent relationship between Chl-a concentrations and tidal parameters across different regions and time intervals.

Keywords

Main Subjects

OPEN ACCESS

©2024 The author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit: 

http://creativecommons.org/licenses/by/4.0/

PUBLISHER NOTE

GJESM Publisher remains neutral concerning jurisdictional claims in published maps and institutional affiliations.

CITATION METRICS & CAPTURES

Google Scholar Scopus Web of Science PlumX Metrics Altmetrics Mendeley |

CURRENT PUBLISHER

GJESM Publisher

Letters to Editor

GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.

CAPTCHA Image