1 Department of Biomedical Engineering, Faculty of Engineering, The Hashemite University, Zarqa 13133, Jordan

2 Department of Civil Engineering, Faculty of Engineering, The Hashemite University, Zarqa 13133, Jordan

3 Department of Industrial Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan

4 Department of Chemical Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan

5 Ministry of Energy and Mineral Resources, Amman 11814, Jordan


BACKGROUND AND OBJECTIVES: Jordan's limited water resources have reduced daily water consumption, leading to a highly concentrated greywater production rate of 54 million cubic meters per year. The presence of nitrate ions, total dissolved solids, total suspended solids, chemical oxygen demand, and biological oxygen demand in greywater poses excellent environmental and health risks when disposed untreated. Water scarcity directly impacts water and food security and is expected to intensify at the current resources management practices. The significance of the current and predictable water shortage in the context of sustainable development and the presence of new technologies brought further attention to utilizing non-conventional water sources. Reclamation of treated wastewater, greywater, brackish, and seawater desalination is Jordan's water budget's only non-conventional water resource. This study aims to address Jordan's water scarcity crisis by developing a low-energy, solar-powered greywater filtration system using natural materials while ensuring compliance with Jordanian standards for safe agricultural applications.
METHODS: Several treatment methods have been proposed; however, most of these systems require high to medium energy levels for treatment purposes. Hence, the running cost of the system is relatively high. To address this issue, a four-stage, low-energy, green, and decentralized solar filtration system for greywater treatment has been developed, which uses natural materials available in Jordan and activated carbon to reduce organic and solids content and remove pathogens. The system also uses hot water generated by a Photovoltaic solar system to sanitize the greywater, a novel concept of approach for sanitization. This innovative system is powered entirely by solar energy and can be installed in individual homes.
FINDINGS:  The results of the developed solar filtration system were very efficient in reducing turbidity, chemical oxygen demand, and Escherichia coli removal: 92, 95, and 100 percent, respectively. Furthermore, the system showed a high potential for total coliforms and Escherichia coli inactivation, reaching 4.64 and 3.15 log units, respectively. Product water meets Jordan standards, ensuring safe reuse for irrigation applications. The findings of this study highlight the satisfactory performance of the developed greywater solar filtration setup. The economic feasibility analysis demonstrates that the proposed system is economically viable and financially sound. The system’s reliance on solar energy and the absence of consumables contribute to its sustainability. They are addressing sustainable practices in greywater treatment in addition to water scarcity concerns.
CONCLUSION: The treated greywater, obtained through the series of treatment steps, including solar disinfection, successfully met the Jordanian standards for safe reuse. The substantial reduction of Escherichia coli and total coliforms to acceptable levels demonstrates the treatment system's effectiveness in generating pathogen-free greywater, suitable for a wide range of applications. The study concludes that the solar filtration setup consistently delivers high-quality, pathogen-free greywater, meeting stringent regulatory requirements. This innovative, sustainable system offers a viable solution to Jordan’s water scarcity, introducing a new non-conventional water resource that requires no consumables (non-chemical, non-hazardous materials), thereby addressing sustainability concerns in greywater treatment.

Graphical Abstract

Development of a sustainable, green, and solar-powered filtration system for E. coli removal and greywater treatment


  • A novel four-stage solar filtration system is introduced, achieving remarkable removal rates of 92% for turbidity and 95% for COD and completely eliminating E. coli from greywater;
  • The solar-powered filtration system demonstrates economic viability without needing consumables, presenting a sustainable solution that delivers high-quality treated greywater, ideal for safe irrigation practices;
  • This study highlights the potential of this non-conventional water resource, offering a promising contribution to alleviating water shortages and promoting sustainable water use in the region.


Main Subjects


©2024 The author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit:


GJESM Publisher remains neutral concerning jurisdictional claims in published maps and institutional affiliations.


Google Scholar Scopus Web of Science PlumX Metrics Altmetrics Mendeley |


GJESM Publisher

Letters to Editor

GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.