Department of Civil Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu 603203, India


BACKGROUND AND OBJECTIVES: Recent investigations indicated that continuous use of fertilizers and pesticides in agricultural fields not only deteriorated soil health but also caused a deleterious effect on surface and groundwater bodies. Treating such wastewater using microalgae has shown higher nutrient removal and biomass efficiency. Moreover, microalgae are proven to be miniature factories that augment the huge potential of biofuel. The aim of this study is to evaluate the different light intensities required for Chlorella vulgaris algae to remove nutrients from synthetic agricultural wastewater in a fabricated bubble column photobioreactor. Additionally, the research findings focus on assessing the degradation of organic pollutants and biomass generation under different light conditions.
METHODS: In this study, synthetic agrochemical wastewater was treated in a bubble column photobioreactor with blue, red, sunlight, and white light conditions. The treatment was conducted in a batch process with a hydraulic retention time of 21 days, using light intensity of 1800–2800 luminescence and a temperature maintained at 25–28° degrees Celsius.
FINDINGS: Under different lighting conditions, the blue light condition exhibited a higher biomass concentration of 3.99 gram per liter, with an estimated heat energy value of 1.278 kilojoule per liter. Moreover, in the blue light condition, scanning electron microscopy analysis showed no significant changes in the shape of Chlorella vulgaris and energy-dispersive X-ray analysis elemental composition exhibited the lowest oxygen-to-carbon ratio (1.03). Fourier transform infrared spectroscopy was used to illustrate the functional group of microalgae under different lighting conditions. The lipid, protein, carbohydrate, and amino acid contents were 3329–3332, 2116–2139, 1636–1645, and 545–662 per centimeter, respectively. The higher biomass potential from the wastewater treatment shows significant benefit in terms of feedstock and biofuel production.
CONCLUSIONS: The present investigation identified the nutrient reduction and biomass productivity to be more in blue light condition for Chlorella vulgaris algae. The investigation also assessed the potential of lipid, carbohydrate, and protein content in Chlorella vulgaris, which indirectly evaluates the biofuel potential of the species.

Graphical Abstract

Bioenergy potential of Chlorella vulgaris under the influence of different light conditions in a bubble column photobioreactor


  • Photobioreactors were fabricated to treat agricultural wastewater under different light conditions;
  • Nutrient removal (>90%), and organic pollutant removal (>65%) under different light conditions were achieved;
  • SEM-EDX analysis for characterization of the vulgaris revealed rigid cell structure and 1.03 O/C ratio on treating with blue light condition;
  • DSC analysis for heat value and bioenergy potential of the vulgaris under blue light condition was found to be 1.278 kJ/L.


Main Subjects


©2023 The author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit:


GJESM Publisher remains neutral concerning jurisdictional claims in published maps and institutional affiliations.


Google Scholar Scopus Web of Science PlumX Metrics Altmetrics Mendeley |


GJESM Publisher

Letters to Editor

GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.