Document Type: CASE STUDY

Authors

1 Department of Information Management, College of Informatics, Chaoyang University of Technology, Taiwan

2 Department of Statistics, College of Natural Sciences Seoul National University, Shin Lim-Dong, Kwan Ak Ku, South Korea

3 Department of Statistics, Padjadjaran University, West Java, Indonesia

4 Museum Zoologicum Bogoriense, Research Center for Biology, Indonesian Institute of Sciences, Indonesia

5 Indonesian Agency for Meteorological, Climatological and Geophysics, BMKG, Manado, Indonesia

Abstract

BACKGROUND AND OBJECTIVES: The classification of marine animals as protected species makes data and information on them to be very important. Therefore, this led to the need to retrieve and understand the data on the event counts for stranded marine animals based on location emergence, number of individuals, behavior, and threats to their presence. Whales are generally often stranded in very shallow areas with sloping sea floors and sand. Data were collected in this study on the incidence of stranded marine animals in 20 provinces of Indonesia from 2015 to 2019 with the focus on animals such as Balaenopteridae, Delphinidae, Lamnidae, Physeteridae and Rhincodontidae.
METHODS:Multivariate latent generalized linear model was used to compare several distributions to analyze the diversity of event counts. Two optimization models including Laplace and Variational approximations were also applied.
RESULTS: The best theta parameter in the latent multivariate latent generalized linear latent variable model was found in the Akaike Information Criterion, Akaike Information Criterion Corrected and Bayesian Information Criterion values, andthe information obtained was used to create a spatial cluster. Moreover, there was a comprehensive discussion on ocean-atmosphere interaction and the reasons the animals were stranded.
CONCLUSION: The changes in marine ecosystems due to climate change, pollution, overexploitation, changes in sea use, and the existence of invasive alien species deserve serious attention.

Graphical Abstract

Highlights

  • There are differences in the number of events counts for stranded marine animals in 20 provinces of Indonesia during 2015-2019;
  • Multivariate latent generalized linear models have been shown to be successful in estimating differences in the number of event counts. Both Laplace approximation and Variational approximation used for optimization provided different results;
  • Poisson was found to be more appropriate with Laplace approximation while Gaussian is the best fit for Variational approximation. Moreover, the use of Tweedie was found to require a very long time of computing to reach convergence.

Keywords

Main Subjects

Abreo, N.A.S.; Blatchley, D.; Superio, M. D., (2019). Stranded whale shark (Rhincodon typus) reveals vulnerability of filter-feeding elasmobranchs to marine litter in the Philippines. Mar. Pollut. Bull., 141: 79–83 (5 pages).

Anggraini, Y.; Notodiputro,K.A.; Saefuddin,A.; Toharudin,T., (2020). Latent factor linear mixed model (LFLMM) for modelling Flanders. J. Comm. Math. Biol. Neuro., 2020: 1–14 (14 pages).

Bartholomew, D.; Knott, M.; Moustaki, I., (2011). Latent variable models and factor analysis: A Unified Approach: 3rd Edition, Latent Variable Models and Factor Analysis: A Unified Approach: 3rd Edition (294 pages).

Bianconcini, S.; Cagnone, S., (2012). Estimation of generalized linear latent variable models via fully exponential Laplace approximation. J. Multivariate Anal., 112: 183–193 (11 pages).

Caraka, R.E.; Shohaimi S.; Kurniawan, I.D.; Herliansyah, R.; Budiarto, A.; Sari, S.P.; Pardamean, B., (2018). Ecological Show Cave and Wild Cave: Negative Binomial Gllvm’s Arthropod Community Modelling. Procedia Comput. Sci., 135: 377–384 (8 pages).

Caraka, R. E.; Chen, R.C.; Lee, Y.; Toharudin, T.; Kurniawan, I.D.; Asmawati.S.; Ropawandi,D.; Akbar,M.F.R.; Indra; Rustan, M.F., (2020a). Latent GLM Tweedie Distribution in Butterflies Species Counts. Ad. Int. Syst. Res., 172: 306-314 (9 pages).

Caraka, R. E.; Chen, R.C.;  Lee, Y.;  Noh, M.;  Toharudin, T.;  Pardamean,B.; Saputra,A., (2020b). Variational approximation multivariate generalized linear latent variable model in diversity termites. Sylwan., 164(1): 161–177 (16 pages).

Caraka, R.E.; Nugroho, N.T.; Tai, S.K.; Chen, R.C.; Toharudin, T.; Pardamean, B., (2020c). Feature importance of the aortic anatomy on endovascular aneurysm repair (EVAR) using Boruta and Bayesian MCMC. J. Comm. Math. Biol. Neuro., 2020:1–23 (23 pages).

Chan, D.K.P.; Tsui, H.C.L.; Kot, B.C.W., (2017). Database documentation of marine mammal stranding and mortality: Current status review and future prospects. Disease of AQ Organisms (10 pages).

Colman, J. G., (1997). A review of the biology and ecology of the whale shark. J. Fish Biol., (15 pages).

Crawley, M.J., (2012). Regression chapter 10. The R Book., 449–497 (1051 pages).

Demos, T. C.; Achmadi, A.S.;  Giarla, T.C.;  Handika,H.;  Mahardatunkamsi .;  Rowe, K.C .;  Esselsstyn J.A., (2016). Local endemism and within-island diversification of shrews illustrate the importance of speciation in building Sundaland mammal diversity. Molecular Ecol., 25(20): 5158–5173 (16 pages).

Duignan, P.J., (2003). Disease investigations in stranded marine mammals 1999–2002., DOC Science Internal Series (32 pages).

Fasano, G.: Franceschini, A., (1987). A multidimensional version of the Kolmogorov-Smirnov. Month Not of the Roy. Astr. Soc., 225(1): 155-170 (16 pages).

Ha, I.D.; Lee, Y.; Song, J.K., (2002). Hierarchical-likelihood approach for mixed linear models with censored data. Lifetime Data Anal., 2002(8): 163–176 (13 pages).

Herliansyah, R.; Fitia, I., (2018). Latent variable models for multi-species counts modeling in ecology, Biodi J. Biol. Div., 19(5): 1871–1876 (6 pages).

Huber, P.; Ronchetti, E.; Victoria-Feser, M.P., (2004). Estimation of generalized linear latent variable models. J. Royal Stat Soc. Series B: Statistic. Method. 66(4): 893-908 (16 pages).

Hui, F.K.C.;  Wartodm, D.I.;  Ormerod, J.T.;  Haapaniemi, V.;  Taskinen,S., (2017). Variational approximations for generalized linear latent variable model. J. Comput. Graph. Stat., 26(1): 35-43 (9 pages).

Jamilatuzzahro; Caraka, R.E.; Herliansyah, R., (2018).Aplikasi generalized linear model dengan R. 1st ed., Yogyakarta: INNOSAIN GI Yogyakarta (104 pages).

Jamilatuzzahro; Caraka, R.E.; Aprinaldy, D.; Mahadi, A., (2019). Generalized linear model multivariate poisson with artificial marginal (GLM-MPAM): Application of vehicle insurance.  AIP Conference Proceedings., 2111 (020013):1-7 (7 pages).

Kristensen, K.; Nielsen, A.; Berg, C.W.; Skaug, H.; Bell, B.M., (2016). TMB: Automatic differentiation and laplace approximation. J. Stat. Soft., 70: 1–21 (21 pages).

Kuha, J., (2004). AIC and BIC: Comparisons of assumptions and performance. Soc. Meth. Res., 33(2): 188-229 (31 pages)

Kurniawan, I.D.;   Rahmadi, C.; Caraka, R.E.;  Ardi, T.E., (2018). Short communication: Cave-dwelling arthropod community of semedi show cave in gunungsewu karst area, Pacitan, East Java, Indonesia. Biodiversitas., 19(3): 857–866 (10 pages).

Kurniawan, I.D.;   Soesilhadi, H. R.;  Rahmadi,C.;  Caraka, R.E.;   Pardamean,B., (2018). The difference on arthropod communities structure within show caves and wild caves in Gunungsewu karst area, Indonesia. Int. J. Ecol. Environ. Conserv., 24(1): 81–90 (10 pages).

Lee, Y.; Nelder, J., (2001). Modelling and analyzing correlated non-normal data. J.Statistical Modeling An Int. J., 1(1): 3–16 (14 pages).

Lee, Y.; Noh, M. (2012). Modelling random effect variance with double hierarchical generalized linear models. J. Statistic. Modeling. An Int. J., 12(6): 487–502 (16 pages).

Lomba, A.; Pellissier, L.; Randin, C.; Vicente, J.; Moreira, F.; Honrado, J.; Guisan, A., (2010). Overcoming the rare species modelling paradox: A novel hierarchical framework applied to an Iberian endemic plant. J. Biol. Conserv., 143(11): 2647–2657 (11 pages).

Lusher, A. L.; Milian, G.H.; Berrow, S.; Rogan, E.; O'Connor, I., (2018). Incidence of marine debris in cetaceans stranded and bycaught in Ireland: Recent findings and a review of historical knowledge. J. Environ. Pollut., 232: 467–476 (10 pages).

Maryanto, I.; Achmadi, A.S.; Kartono, A.P., (2008). Mamalia dilindungi perundang-undangan Indonesia. LIPI Press (254 pages).

Mouillot, D.; Bellwood, D.R.;  Baraloto, C.;  Chave,J.; Galzin, R.; Harmelin-Vivien, M.;  Kulbicki, M.;  Lavergne, S.;  Lavorel, S.;  Mouquet, N.;  Paine, N.M.C.;  Renaud, J.;  Thuiller, W., (2013). Rare Species Support Vulnerable Functions in High-Diversity Ecosystems. PLoS One. 11(5): 1–11 (11 pages).

Niku, J.; Warton, D.I.; Hui, F.K.C.; Taskinen, S., (2017). Generalized Linear Latent Variable Models for Multivariate Count and Biomass Data in Ecology. J. Agric. Biol. Environ. Stat., 22(4): 498–522 (25 pages).

Niku, J.; Brooks, W.; Herliansyah, R.; Hui, F.K.C.; Taskinen, S.; Warton, D.I., (2019a). Efficient estimation of generalized linear latent variable models. PLoS ONE., 14(5): 1–20 (20 pages).

Niku, J.; Hui, F.K.C., (2019b). Gllvm: Fast analysis of multivariate abundance data with generalized linear latent variable models. J. Meth. Ecol. Evol., 1–10 (10 pages).

Noh, M.; Lee, Y.; Oud, J.H.L.; Toharudin, T., (2019). Hierarchical likelihood approach to non-Gaussian factor analysis. J. Stat. Comput. Simulation. 89(3): 1555–1573 (19 pages).

Norman, B., (2002). CITES Identification Manual Whale Shark (Rhincodon typus Smith 1829) (18 pages).

Rahman, D. A.; Herliansyah, R.; Rianti, P.;  Rahmat, U.M.;  Firdaus, A.Y.;  Syamsudin, M., (2019). Ecology and conservation of the endangered banteng (Bos javanicus) in Indonesia Tropical Lowland Forest. Hayati J. Biol.., 26(2): 68–80 (13 pages).

Rudolph, P.; Smeenk, C., (2009). Indo-West Pacific marine mammals. In Encyclopedia of Marine Mammals. Academic Press. 608–616 (9 pages).

Stevens, J.D., (2007). Whale shark (Rhincodon typus) biology and ecology: A review of the primary literature. Fish. Res., (6 pages).

Verfuss, U.K., (2018). Comparing methods suitable for monitoring marine mammals in low visibility conditions during seismic surveys. J. Marine Pollut. Bull., 26: 1–18 (18 pages).

Warton, D.I., (2005). Many zeros does not mean zero inflation: Comparing the goodness-of-fit of parametric models to multivariate abundance data. Environmetrics. 16(3): 275–289 (15 pages).

Wibowo, F.; Dharmadi, K., (2014). Stranding of Marine Megafauna in Indonesian Waters: Causes of the Phenomenon and Handling Methods (Seastar2000). In Design Symposium on Conservation of Ecosystem. The 13th SEASTAR2000 workshop. 19–25 (7 pages).

Letters to Editor

GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.

CAPTCHA Image