Document Type: ORIGINAL RESEARCH PAPER

Authors

1 Department of Environmental Engineering Faculty of Engineering Diponegoro University, Semarang, Indonesia

2 Center Science and Technology, IAIN Surakarta, Pandawa, Pucangan, Kartasura, Indonesia

Abstract

BACKGROUND AND OBJECTIVES: Urban intensity and activities produce a large amount of biodegradable municipal solid waste. Therefore, biodrying processing was adopted to ensure the conversion into Refuse Derived Fuel and greenhouse gases.
METHODS: This study was performed at a greenhouse, using six biodrying reactors made from acrylic material, and equipped with digital temperature recording, blower, and flow meters. The variations in airflow (0, 2, 3, 4, 5, 6 L/min/kg) and the bulking agent (15%) were used to evaluate calorific value, degradation process and GHG emissions.
FINDINGS: The result showed significant effect of airflow variation on cellulose content and calorific value. Furthermore, the optimum value was 6 L/min/kg, producing a 10.05% decline in cellulose content, and a 38.17% increase in calorific value. Also, the water content reduced from 69% to 40%. The CH4 concentration between control and biodrying substantially varied at 2.65 ppm and 1.51 ppm respectively on day 0 and at peak temperature. Morever, the value of N2O in each control was about 534.69 ppb and 175.48 ppb, while the lowest level was recorded after biodrying with 2 L/min/kg airflow.
CONCLUSION: The calorific value of MSW after biodrying (refuse derived fuel) ranges from 4,713 – 6,265 cal/g. This is further classified in the low energy coal (brown coal) category, equivalent to <7,000 cal/g. Therefore, the process is proven to be a suitable alternative to achieve RDF production and low GHG emissions.

Graphical Abstract

Highlights

  • The biodrying process can increase calorific value of Municipal Solid Waste and reduce greenhouse gas emissions;
  • The calorific value of Refuse Derived Fuel can be classified in brown coal category, which is equal to <7,000 cal/g;
  • Biodrying process can reduce CO2 emissions by 13 times compared to without biodrying.

Keywords

Main Subjects

Adani, F.; Baido, D.; Calcaterra, E.; Genevini, P.L., (2002). The influence of biomass temperature on biostabilization-biodrying of municipal solid waste. Bioresour. Technol., 83(3): 173–179 (7 pages).

Anindyawati, T., (2010). Potensi selulase dalam mendegradasi lignoselulosa limbah pertanian untuk pupuk organik. Berita Selulosa., 45(2): 70–77 (8 pages).

Astuti, F.W., (2016). Kandungan lignoselulosa hasil fermentasi limbah sayur dan jerami padi menggunakan inokulum kotoran sapi dengan variasi lama inkubasi. Universitas Muhammadiyah.

Awasthi, M. K.; Wang, Q; Huang, H; Ren, X; Lahori, A. H; Mahar, A; Ali, A; Shen, F; Li, R; Zhang, Z, (2016). Influence of zeolite and lime as additives on greenhouse gas emissions and maturity evolution during sewage sludge composting. Bioresour. Technol.,216; 172–181 (10 pages).  

Bilgin, M.; Tulun, Ş., (2015). Biodrying for municipal solid waste: Volume and weight reduction. Environ. Technol., 36(13): 1691–1697 (7 pages).

Colomer-Mendoza, F. J.; Herrera-Prats, L.; Robles-Mart´ınez, F.; Gallardo-Izquierdo, A.; Pi˜na-Guzm´an, A., (2013). Effect of airflow on biodrying of gardening wastes in reactors. J. Environ. Sci., 25(5): 865–872 (8 page).

Egan, A.; Baddeley, A.; Joe, S.; Whiting, K., (2005). Mechanical-Biological-Treatment : A Guide for Decision Makers Processes, Policies and Market.

Evangelou, V.P., (1998). Environmental Soil and Water Chemistry : Principles and Applications. John Wiley and Sons, Inc.

Fadlilah, N.; Yudihanto, G., (2013). Pemanfaatan Sampah Makanan Menjadi Bahan Bakar Alternatif dengan Metode Biodrying. Teknik POMITS, 2(2): 289–293 (5 page).

Frei, K. M.; Cameron, D.; Stuart, P.R., (2004). Novel Drying Process Using Forced Aeration Through a Porous Biomass Matrix. Dry. Technol., 22(5): 1191–1215 (25 page).

Garg, A.; Smith, R.; Longhurst, P.J.; Pollard, S.J. .; Simms, N.; Hill, D., (2007). Comparative evaluation of SRF and RDF co-combustion with in bed combustor. Proceedings of the Eleventh International Waste Management and Landfill Symposium: 1–8 (8 page).

Goering, H.K.; van Soest, P.J., (1970). Forgae fibre analysis. USDA Agricultural Handbook.

González, D.; Guerra, N.; Colón, J.; Gabriel, D.; Ponsá, S.; Sánchez, A., (2019). Filling in sewage sludge biodrying gaps : Greenhouse gases , volatile organic compounds and odour emissions. Bioresour. Technol., 291: 1-8 (8 page).

Goyal, S.; Dhull, S.K.; Kapoor, K.K., (2005). Chemical and biological changes during composting of different organic wastes and assessment of compost maturity. Bioresour. Technol., 96: 1584–1591 (8 page).

Hellebrand, H.J., (1998). Emission of Nitrous Oxide and other Trace Gases during Composting of Grass and Green Waste. J. Agric. Eng. Res., 69(4): 365–375 (11 page).

Hao, X.; Chang, C.; Larney, F.J.; Travis, G.R., (2002). Greenhouse Gas Emissions during Cattle Feedlot Manure Composting. J. Environ. Qual.; 31: 700–700 (10 page).

Howard, R.L.; Abotsi, E.; Jansen van Rensburg, E.L.; Howard, S., (2003). Lignocellulose biotechnology : issues of bioconversion and enzyme production. Afr. J. Biotechnol., 602–619 (18 page).

Huang, D.L., (2010). Changes of microbial population structure related to lignin degradation durin lignocellulosic waste composting. Biosour. Technol., 101(1): 4062–4067 (6 page).

Jalil, N.A.A.; Basri, H.; Basri, N.E.A.; Abushammala, M.F.M., (2016). Biodrying of municipal solid waste under different ventilation periods. Environ. Eng. Res.; 21(2) : 145–151 (7 page).

Jokiniemi, H.T.; and Ahokas, J.M., (2014). Drying process optimisation in a mixed-flow batch grain dryer. Biosyst. Eng.; 121: 209–220 (12 page).

Li, X.; Dai, X.; Yuan, S.; Li, N.; Liu, Z.; Jin, J., (2015). Thermal analysis and 454 pyrosequencing to evaluate the performance and mechanisms for deep stabilization and reduction of high-solid anaerobically digested sludge using biodrying process. Bioresour. Technol., 175: 245–253 (9 page).

Ma, J.; Zhang, L.; Li, A., (2016). Energy-efficient co-biodrying of dewatered sludge and food waste : Synergistic enhancement and variables investigation. Waste Manage., 56: 411–422 (12 page).

Maulini-duran, C.; Artola, A.; Font, X.; Sánchez, A., (2013). A systematic study of the gaseous emissions from biosolids composting : Raw sludge versus anaerobically digested sludge. Bioresour. Technol., 147: 43–51 (9 page).

Pan, J.; Cai, H.; Zhang, Z.; Liu, H.; Li, R.; Mao, H.; Awasthi, M. K.; Wang, Q.; Zhai, L., (2018). Comparative evaluation of the use of acidic additives on sewage sludge composting quality improvement, nitrogen conservation, and greenhouse gas reduction. Bioresour. Technol, 270: 467–475 (9 page).

Patil, A.A.; Kulkarni, A.A.; Patil, B.B., (2014). Waste to energy by incineration. J. Comput. Technol., 3(6): 12–15 (4 page).

Perazzini, H.; Freire, F.B.; Freire, F. B.; Freire, J.T., (2016). Treatment of Solid Wastes Using Drying Technologies : A Review. Dry. Technol., 34(1): 37–41 (5 page).

Rada, E.C.; Ragazzi, M., (2015). Energy from waste : The role of biodrying . U.P.B. Sci. Bull.; 2: 67–72 (6 page).

Rincón, C.A.; De Guardia, A.; Couvert, A.; Le Roux, S.; Soutrel, I.; Daumoin, M.; Benoist, J.C., (2019). Chemical and odor characterization of gas emissions released during composting of solid wastes and digestates. J. Environ. Manage, 233: 39–53 (15 pages).

Sadaka, S.; Ph, D.; Eng, P.; Vandevender, K.; Costello, T.; Ph, D.; Sharara, M., (2011). Partial Composting for Biodrying Organic Materials. University of Arkansas.

Scheutz, C.; Pedersen, R. B.; Petersen, P.; Jorgensen, J.; Ucendo, I.; Monster, J., (2014). Mitigation of methane emission from an old unlined landfill in Klintholm, Denmark using a passive biocover system. Waste Manage., 34: 1179–1190 (12 page).

Sen, R.; Annachhatre, A.P., (2015). Effect of Airflow  rate and residence time on biodrying of cassava peel waste. Int. J. Environ. Technol. Manage., 18(1): 9–29 (21 page).

Sharma, A.; Ganguly, R.; Kumar, A., (2019). Spectral characterization and quality assessment of organic compost for agricultural purposes. Int. J. Recycl. Organic Waste Agric., 8: 197–213 (17 page).

Shen, Y.; Bin Chen, T.; Gao, D.; Zheng, G.; Liu, H.; Yang, Q., (2012). Online monitoring of volatile organic compound production and emission during sewage sludge composting. Bioresour. Technol., 123: 463–470 (8 page).

Siswanto, M.H.; Mahendra, F., (2012). Perekayasaan Nanosilika Berbahan Baku Silika Lokal Sebagai Filler Kompon Karet Rubber Air Bag Peluncur Kapal Dari Galangan. Prosiding InSiNas: 56–59 (4 page).

Sudrajat, R., (2006). Mengelola Sampah Kota. Penebar Swadaya.

Sugni, M.; Calcatera, E.; Adani, F., (2005). Biostabilization-biodrying of municipal solid waste by inverting air-flow. Bioresour. Technol., 96(12): 1331–1337 (7 page).

Suksankraisorn, K.; Patumsawad, S.; Fungtammasan, B., (2010). Co- firing of Thai lignite and municipal solid waste ( MSW ) in a fluidised bed : Effect of MSW moisture content. Appl. Thermal Eng., 30: 2693–2697 (5 page).

Tom, A.P.; Haridas, A.; Pawels, R., (2016). Biodrying Process Efficiency: -Significance of Reactor Matrix Height. Procedia Technol., 25: 130–137 (8 page).

Velis, C.A.; Longhurst, P.J.; Drew, G.H.; Smith, R.; Pollard, S.J.T., (2009). Biodrying for mechanical-biological treatment of wastes: A review of process science and engineering. Bioresour. Technol., 100(11): 2747–2761 (15 page).

Wagland, S.T.; Kilgallon, P.; Coveney, R.; Garg, A.; Smith, R.; Longhurst, P.J.; Pollard, S.J.T.; Simms, N., (2011). Comparison of coal / solid recovered fuel ( SRF ) with coal / refuse derived fuel ( RDF ) in a fluidised bed reactor. Waste Manage., 31: 1176–1183 (8 page).

Wang, Q. Wang, Q.; Awasthi, M. K.; Ren, X.; Zhao, J.; Li, R.; Wang, Z.; Wang, M.; Chen, H.; Zhang, Z., (2018). Combining biochar, zeolite and wood vinegar for composting of pig manure: The effect on greenhouse gas emission and nitrogen conservation. Waste Manag. 74: 221–230  (9 page).

Wardhani, A.; Sutrisno, E.; Purwono, P., (2017). Pengaruh Variasi Debit Aerasi Terhadap Kadar Selulosa Dan Nilai Kalor Pada Metode Biodrying Municipal Solid Waste (MSW). Universitas Diponegoro.

Widarti, B.N.; Wardhini, W.K.; Sarwono, E., (2015). Pengaruh Rasio C/N Bahan Baku Pada Pembuatan Kompos Dari Kubis dan Kulit Pisang. Integrasi Proses. 5(2) : 75–80 (6 page).

Yusuf, R.O.; Noor, Z.Z.; Abba, A.H., (2012). Greenhouse Gas Emissions : Quantifying Methane Emissions from Livestock. Am. J. Eng. Appl. Sci., 5(1): 1–8 (8 page).

Zhang, D.; He, P.; Jin, T.; Shao, L., (2008). Bioresource Technology biodrying  of municipal solid waste with high water content by aeration procedures regulation and inoculation. Bioresour. Technol., 99: 8796–8802 (7 page).

Zhao, L.; Gu, W.; He, P.; Shao, L., (2010). Effect of air-flow rate and turning frequency on biodrying  of dewatered sludge. Water Res., 44: 6144–6152 (9 page).

Letters to Editor

GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.

CAPTCHA Image