1 Department of Forest Resources Management, College of Forestry and Environmental Science, Central Mindanao University, Musuan, Maramag, Philippines

2 Department of Environmental Science, College of Forestry and Environmental Science, Central Mindanao University, Musuan, Maramag, Philippines


BACKGROUND AND OBJECTIVES: The study explored the capability of the geographic information system interface for the water erosion prediction project, a process-based model, to predict and visualize the specific location of soil erosion and sediment yield from the agricultural watershed of Taganibong.
METHODS: The method involved the preparation of the four input files corresponding to climate, slope, land management, and soil properties. Climate file processing was through the use of a breakpoint climate data generator. The team had calibrated and validated the model using the observed data from the three monitoring sites.
FINDINGS: Model evaluation showed a statistically acceptable performance with coefficient of determination values of 0.64 (probability value = 0.042), 0.85 (probability value = 0.000), and 0.69 (probability value = 0.001) at 95% level, for monitoring sites 1, 2, and 3, respectively. A further test revealed a statistically satisfactory model performance with root mean square error-observations standard deviation ratio, Nash-Sutcliffe efficiency, and percent bias of 0.62, 0.61, and 44.30, respectively, for monitoring site 1; 0.65, 0.56, and 25.60, respectively, for monitoring site 2; and 0.60, 0.65, and 27.90, respectively, for monitoring site 3. At a watershed scale, the model predicted the erosion and sediment yield at 89 tons per hectare per year and 22 tons per hectare per year, respectively, which are far beyond the erosion tolerance of 10 tons per hectare per year. The sediment delivery ratio of 0.20 accounts for a total of 126,390 tons of sediments that accumulated downstream in a year.
CONCLUSION: The model generated maps that visualize a site-specific hillslope, which is the source of erosion and sedimentation. The study enables the researchers to provide information helpful in the formulation of a sound policy statement for sustainable soil management in the agricultural watershed of Taganibong. 

Graphical Abstract

Geographic information system and process-based modeling of soil erosion and sediment yield in agricultural watershed


  • Modeling with GeoWEPP allows speedy delineation of catchment boundary, channel network and individual hillslopes for a larger area of the watershed;
  • The study facilitates the identification of the specific location of soil erosion occurrences that are beyond the tolerable limit, hence, site-specific implementation of the soil protection program and projects can be more realistic and effective;
  • The information generated from this study enables decision-makers to formulate good and science-based policy statements relative to soil erosion control measures for sustainable agriculture within the watershed.


Main Subjects


This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit:

Citation Metrics & Captures

Google Scholar Scopus Web of Science PlumX Metrics | Altmetrics Mendeley |

Letters to Editor

GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.