Document Type : CASE STUDY


Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, West Java, Indonesia


Nifedipine is a hypertension drug must be consumed three times a day due to its low oral bioavailability. One way of developing a controlled drug delivery system is making nifedipine microcapsules by using environmentally friendly polymers of polylactic acid and polycaprolactone via the evaporation method using oil-in-water solvents. Polylactic acid and polycaprolactone can be said to be environmentally friendly polymers, because they can be degraded naturally in nature both in the biotic, and abiotic environment, or microorganism. In this study, polylactic acid, Polycaprolactone, and nifedipine were dissolved in dichloromethane solvent; then, an emulsifier was added for the emulsification stage. After passing through the dispersion stage for the process of compaction of the microcapsules by solvent evaporation, the microcapsules were filtered. Microcapsules were characterized using particle size analysis, X-ray diffractometry, and scanning electron microscopy, respectively. The drug release percentage was determined by dissolving microcapsules for 55 hours using a buffer at the potential of hydrogen 1.2 and pH 7.4 as dissolution media. In this study, all variations in the composition of polyblend resulted in a percent efficiency of encapsulation ranging from 78.82%-89.84%, and percent release ranging from 6.80%-39.07%. The composition of 100% polylactic acid produces the highest percent encapsulation efficiency of 89.84% but produces the lowest percentage of drug release at 6.80%. The best composition obtained was polylactic acid: polycaprolactone 1:9 (weight per weight), with a percent release of 39.07% and percent encapsulation of 78.82%. Microcapsule solids produced are approximately 96%. Particle Size of microcapsule ranges at 0.5 μM.

Graphical Abstract

Environmental friendly carrier material for nifedipine as hypertension drug


  • Poly-DL-lactic acid and polycaprolactone are suitable to be used as a matrix for nifedipine carrier due to their lipophilicity;
  • The higher the composition of polycaprolactone in the matrix, the drug release percentage will be higher due to the polycaprolactone high permeabilities properties;
  • The higher polycaprolactone composition in the matrix will create many holes in the matrix;
  • The greater poly-DL-lactic acid composition in the matrix, the burst release effect will be smaller.


Main Subjects

Letters to Editor

GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.