1 Department of Biological Sciences, Queensborough Community College, City University of New York, Bayside, New York, USA

2 Department of Biological Sciences, Kingsborough Community College, City University of New York, Brooklyn, New York, USA

3 Department of Biology, Georgia State University, Atlanta, Georgia, USAGeorgia State University


Plumb Beach, Brooklyn, New York in USA is an important horseshoe crab breeding and nursery ground that has experienced substantial anthropogenic influence, including pollution, erosion and subsequent restoration. Since little is known about the relationship between sediment microbial communities and juvenile horseshoe crab survival, next generation sequencing was used to characterize and compare the sediment microbiome of three distinct areas of Plumb Beach:- a tidal creek with abundant juveniles, East Beach with moderate number of juveniles, and West Beach- a highly disturbed area where juvenile crabs are rarely seen. The microbiome of juvenile crab intestinal content (both dissected gut content and fecal flush content) from the tidal creek site was also examined. The results showed that in our 2017 survey, the overall dominant sediment orders at all beach sites were Vibrionales (30%), Flavobacteriales (22%) and Alteromonadales (21%). Although alpha diversity was similar among the three beach sites, Bray-Curtis distances assessed by Permanova revealed significant differences in Beta diversity, with a unique microbial assemblage found in the tidal creek. Both crab gut and fecal flush samples did not sequence well, showing low species diversity and very high variability. This study is the first to use next generation sequencing to characterize Plumb Beach sediment microbes and the first attempt to examine the gut microbiome of juvenile horseshoe crabs. This information will contribute to understanding the relationships between sediment microbial assemblages and juvenile crab populations within this important urban habitat.

Graphical Abstract


  • The study is the first to use a metagenomics approach to examine microbial assemblages in the sediments at Plumb Beach (Jamaica Bay, NY)- an important habitat for juvenile horseshoe crabs whose numbers have been in decline in recent years;
  • The results show that distinct beach areas share several taxa in common but also have their own unique assemblages. Vibrionales, Flavobacteriales and Alteromonadales were the most common orders found among all sediments;
  • Samples taken from juvenile horseshoe crab digestive tracts (fecal samples and dissected gut contents) yielded low sequence numbers and high variability;
  • Knowledge of the sediment microbiome at Plumb Beach will increase understanding of environmental conditions suitable for juvenile horseshoe crabs that could inform future conservation, restoration and reintroduction activities.


Main Subjects

Anderson, M.J.; Willis, T.J., (2003). Canonical analysis of principal coordinates: A useful method of constrained ordination for ecology. Ecol., 84(2): 511–525 (15 pages).

Andrews, K.; De Barba, M.; Russello, M.; Waits, L., (2018). Advances in Using Non-invasive, Archival, and Environmental Samples for Population Genomic Studies. In: Population Genomics. Springer, Cham., 1-37 (37 pages).

ASMFC, (2018). Atlantic States Marine Fisheries Commission. Fisheries Focus, 27(4): 1-5 (5 pages).

Baker-Austin, C.; Trinanes J.; Gonzalez-Escalona, N.; Martinez-Urtaza, J., (2017). Non-Cholera Vibrios: The Microbial Barometer of Climate Change Trends Microbiol., 25(1): 76–84 (9 pages).

Balebona, M.C.; Andreu, M.J.; Bordas, M.A., Zorrilla, I., Moriñigo, M.A.; Borrego, J.J., (1998). Pathogenicity of Vibrio alginolyticus for Cultured Gilt-Head Sea Bream (Sparus aurata L.). Appl. Environ. Microbiol., 64(11): 4269–4275 (6 pages).

Benotti, M.J; Abbene, M.; Terracciano, S.T., (2007). Nitrogen Loading in Jamaica Bay, Long Island, New York: Predevelopment to 2005. USGS Scientific Investigation Report; 5051.

Boehm, A.B.; Yamahara, K.M.; Sassoubre, L.M. (2014). Diversity and Transport of Microorganisms in Intertidal Sands of the California Coast. Appl. Environ. Microbiol., 80 (13):3943–3951 (9 pages).

Bolyen, E., Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; Bai, Y.; Bisanz, J.E.; Bittinger, K.; Brejnrod, A.; Brislawn, C.J.; Brown, C.T.; Callahan, B.J.; Caraballo-Rodríguez, A.M.; Chase, J.; Cope, E.K.; Da Silva, R.; Diener, C.; Dorrestein, P.C.; Douglas, G.M.; Durall, D.M.; Duvallet, C.; Edwardson, C.F.; Ernst, M.; Estaki, M.; Fouquier, J.; Gauglitz, J.M.; Gibbons, S.M.; Gibson, D.L.; Gonzalez, A.; Gorlick, K.; Guo, J.; Hillmann, B.; Holmes, S.; Holste, H.; Huttenhower, C.; Huttley, G.A.; Janssen, S.; Jarmusch, A.K.; Jiang, L.; Kaehler, B.D.; Kang, K.B.; Keefe, C.R.; Keim, P.; Kelley, S.T.; Knights, D.; Koester, I.; Kosciolek, T.; Kreps, J.; Langille, M.G.I.; Lee, J.; Ley, R.; Liu, Y.X.; Loftfield, E.; Lozupone, C.; Maher, M.; Marotz, C.; Martin, B.D.; McDonald, D.; McIver, L.J.; Melnik, A.V.; Metcalf, J.L.; Morgan, S.C.; Morton, J.T.; Naimey, A.T.; Navas-Molina, J.A.; Nothias, L.F.; Orchanian, S.B.; Pearson, T.; Peoples, S.L.; Petras, D.; Preuss, M.L.; Pruesse, E.; Rasmussen, L.B.; Rivers, A.; Robeson, M.S.; Rosenthal, P.; Segata, N.; Shaffer, M.; Shiffer, A.; Sinha, R.; Song, S.J.; Spear, J.R.; Swafford, A,D.; Thompson, L.R.; Torres, P.J.; Trinh, P.; Tripathi, A.; Turnbaugh, P.J.; Ul-Hasan, S.; van der Hooft, J.J.J.; Vargas, F.; Vázquez-Baeza, Y.; Vogtmann, E.; von Hippel, M.; Walters, W.; Wan, Y.; Wang, M.; Warren, J.; Weber, K.C.; Williamson, C.H.D.; Willis, A.D.; Xu, Z.Z.; Zaneveld, J.R.; Zhang, Y.; Zhu, Q.; Knight, R.; and Caporaso, J.G., (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology 37: 852–857.9 (6 pages). 

Botton, M.L. (2009). The ecological importance of horseshoe crabs in estuarine and coastal communities: A review and speculative summary. In: Tanacredi, J.T., Botton, M.L., and Smith, D.R. (Eds,) Biology and conservation of horseshoe crabs. Springer, New York.

Botton, M.L.; Colon, C.P.; Rowden, J.; Elbin, S.; Kriensky, D.; McKown, K.; Sclafani, M.; Madden R., (2017). Effects of a beach nourishment project in Jamaica Bay, New York on horseshoe crab (Limulus polyphemus) spawning activity and egg deposition. Estuaries Coasts. 40(2): 974–987 (4 pages).

Botton, M.L.; Loveland, R.E., (2003). Abundance and Dispersal Potential of Horseshoe Crab (Limulus polyphemus) Larvae in the Delaware Estuary. Estuaries, 26(6): 1472–1479 (8 pages).

Callahan, B.J., McMurdie, P.J.; Holmes, S.P., (2017). Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J., 11:12: 1–5 (5 pages).

Camara dos Reis, M.; Lacativa Bagatini, I.; de Oliveira Vidal, L.; Bonnet, M.P.; da Motta MarquesD.; Sarmento, H., (2019). Spatial heterogeneity and hydrological fluctuations drive bacterioplankton community composition in an Amazon floodplain system. PLoS ONE 14(8): 1-19 (19 pages).

Carroll, E.L.; Bruford, M.W.; DeWoody, J.A.; Leroy, G.; Strand, A.; Waits, L.; Wang, J., (2017). Genetic and genomic monitoring with minimally invasive sampling methods. Evol. Appl., 11:1094–1119 (26 pages).

Chase, A.B.; Dolan, K.L.; Mohamed, D.J.; Martiny, J.B.H., (2017). Microb. Biodivers. Ref. Module Life Sci., 1-10 (10 pages).

Colon C. P.; Botton M.; Funch P.; Hoffgaard E.; Mandeep K., Mansfield K., (in press) Population Dynamics, Growth, Diet and Survival of Juvenile American Horseshoe Crabs (Limulus polyphemus) at Plumb Beach Brooklyn New York. In Tanacredi, J. (ed) Springer Research and Considerations in the Global Efforts to Conserve and Protect the Four Species of Horseshoe Crabs. Springer.

Davis, J.W.; Sizemore, R.K., (1982). Incidence of Vibrio Species Associated with Blue Crabs (Callinectes sapidus) Collected from Galveston Bay, Tex. Appl. Environ. Microbiol., 43(5):1092–1097 (6 pages).

Gobet, A.; Bo¨er, S.I.; Huse, S.M.; van Beusekom, J.E.; Quince, C.; Sogin, M.L.; Boetius, A.; Ramette, A., (2012). Diversity and dynamics of rare and of resident bacterial populations in coastal sands. The ISME Journal, 6: 542–553 (12 pages).

Hoffgaard, E., (2017). The role of Limulus polyphemus in coastal food webs. MS Thesis Section of Genetics, Ecology and Evolution Department of Bioscience, Aarhus University. 1–52 (52 pages).

Johnson, C.N.; Bowers, J.C.; Griffitt, K.J.; Molina, V.; Clostio, R.W.; Pei, S.; Laws, E.; Paranjpye, R.N.; Strom, M.S.; Chen, A.; Hasan, N.A.; Huq, A.; Noriea III, N.F.; Grimes, D.J.; Colwell, R.R., (2012). Ecology of Vibrio parahaemolyticus and Vibrio vulnificus in the Coastal and Estuarine Waters of Louisiana, Maryland, Mississippi, and Washington (United States). Appl. Environ. Microbiol., 78(20): 7249-7257 (9 pages).

Karpanty, S.M.; Fraser, J.D.; Berkson, J.; Niles, L.J.; Dey, A.; Smith, E.P., (2006). Horseshoe Crab Eggs Determine Red Knot Distribution in Delaware Bay. J. Wildl. Manage., 70(6): 1704–1710 (7 pages).

Kim, J.H.; Kim, K.Y.; Hahm, Y.T.; Kim B.S.; Chun, J.; Cha, C.J., (2008). Actibacter sediminis

gen. nov., sp. nov., a marine bacterium of the family Flavobacteriaceae isolated from

tidal flat sediment. Int. J. Syst. Evol. Microbiol., 58: 139–143 (5 pages).

Liu, S.; Jiang, Z.; Deng, Y.; Wu, Y.; Zhang, J.; Zhao, C.; Huang, D.; Huang, X.; Trevathan-Tackett, S.M., (2018). Effects of nutrient loading on sediment bacterial and pathogen communities within seagrass meadows. Microbiol. Open, 1-11 (11 pages).

Mallott, E. K.; Malhi, R. S.; Amato, K.R., (2019). Assessing the comparability of different DNA extraction and amplification methods in gut microbial community profiling. Access Microbiol., 1: 1-15 (15 pages).

Martins, M.L.; Mouriño, J.L.P.; Fezer, G.F.; Buglione Neto, C.C.; Garcia, P.; Silva, B.C.; Jatobá A.; Vieira, F., (2010). Isolation and experimental infection with Vibrio alginolyticus in the sea horse, Hippocampus reidi Ginsburg, 1933 (Osteichthyes: Syngnathidae) in Brazil. Brazilian J. Biol., 70(1): 205–209 (5 pages).

Mattei, J.H.; Botton, M.L.; Beekey, M.A.; Colon, C.P., (2015). Horseshoe Crab Research in Urban Estuaries: Challenges and Opportunities. In: Carmichael RH (ed.). Changing Global Perspectives on Horseshoe Crab Biology, Conservation and Management. Cham:Springer, 537–555 (19 pages).

Meziti, A.; Kormas, K.A.; Moustaka-Gouni, M.; Karayanni, H., (2015). Spatially uniform but temporally variable bacterioplankton in a semi-enclosed coastal area. Syst.Appl. Microbiol. 38: 358–367 (10 pages).

Newton, R.J.; Huse, S.M.; Morrison, H.G.; Peake, C.S.; Sogin, M.L.; McLellan, S.L., (2013). Shifts in the Microbial Community Composition of Gulf Coast Beaches Following Beach Oiling. PLoS ONE. 8(9): 1-13 (13 pages).

Nogales, B., Lanfranconi, M.P., Pina-Villalonga, J,M., Bosch, R., (2011). Anthropogenic perturbation in marine microbial communities. Fems Microbiol. Rev., 35(2): 275–298 (24 pages).

Novitsky, T.J., Biomedical Applications of Limulus Amebocyte Lysate. In: Tanacredi J (ed.). Biology and Conservation of Horseshoe Crabs. Boston: Springer, 2009, 315–329 (15 pages).

Pachiadaki, M.G.; Yakimov, M.M.; LaCono, V.; Leadbetter, E.; Edgcomb, V., (2014). Unveiling microbial activities along the halocline of Thetis, a deep-sea hypersaline anoxic basin. The ISME Journal, 8: 2478–2489 (12 pages).

Papa, R.; Parrilli, E.; Sannino, F.; Leadbetter, E.; Edgcomb, V., (2013). Anti-biofilm activity of the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125. Res. Microbiol., 164: 450–456 (6 pages).

Piccini, C.; Garcia-Alonso, J., (2015). Bacterial diversity patterns of the intertidal biofilm in urban beaches of Rio de la Plata. Marine Pollution Bulletin 91: 476-482 (7 pages).

Price, M.N.; Dehal, P.S.; Arkin, A.P., (2010). FastTree 2 - Approximately maximum-likelihood trees for large alignments. PloS One 5: 3 1-10 (10 pages).

Reboleiro-Rivas P.; Martín-Pascual, P.J.; Morillo, J.A.; Poyatosb, J.M.; González-Lópeza, J.; Rodelas, B., (2016). Interlinkages between bacterial populations dynamics and the operational parameters in a moving bed membrane bioreactor treating urban sewage. Water Res., 88: 796-807 (11 pages).

Smith, D.R.; Beekey, M.A.; Brockmann, H.J.; King, T.L.; Millard, M.J.; Zaldívar-Rae, J.A., (2016). Limulus polyphemus. IUCN Red List Threat Species: e.T11987A80159830.

Smith, D.R., Mandt, M.T., MacDonald, P.D.M., (2009). Proximate causes of sexual size dimorphism in horseshoe crabs (Limulus polyphemus) of the Delaware Bay. J. Shellfish Res. 28(2): 405-417 (13 pages).

Staley, C.; Sadowsky, M.J., (2016). Regional Similarities and Consistent Patterns of Local Variation in Beach Sand Bacterial Communities throughout the Northern Hemisphere. Appl. Environ. Microbiol., 82(9): 2751–2762 (12 pages).

Stiborova, H.; Strejcek, M.; Musilova, L.; Demnerova, K.; Uhlik, O., (2020). Diversity and phylogenetic composition of bacterial communities and their association with anthropogenic pollutants in sewage sludge. Chemosphere., 238: 1-9 (9 pages).

Suhadolnik, M.L.R.; Salgado, A.P.; Scholte, L.L.S.; Bleicher, L.; Costa, P.S.; Reis, M.P.; Dias M.F.; Ávila, M.P.; Barbosa, F.A.R.; Chartone-Souza, E.; Nascimento, A.M.A., (2017). Novel arsenic-transforming bacteria and the diversity of their arsenic-related genes and enzymes arising from arsenic-polluted freshwater sediment. Nature, Scientific Reports, 7(11231): 1–17 (17 pages).

Sundarakrishnan, B.; Pushpanathan, M.; Jayashree, S.; Rajendhran, J.; Sakthivel, N.; Jayachandran, S.; Gunasekaran, P., (2012). Assessment of Microbial Richness in Pelagic Sediment of Andaman Sea by Bacterial Tag Encoded FLX Titanium Amplicon Pyrosequencing (bTEFAP). Indian J. Microbiol., 52(4): 544–550 (7 pages).

Suzuki, M.; Nakagawa, Y.; Harayama S.; Yamamoto, S., (2001). Phylogenetic analysis and taxonomic study of marine Cytophaga-like bacteria: proposal for Tenacibaculum gen. nov. with Tenacibaculum maritimum comb. nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp. nov. and Tenacibaculum amylolyticum sp. nov. Int. J. Syst. Evol. Microbiol., 51: 1639–1652 (13 pages).

Ul-Hasan Bowers, R.M.; Figueroa-Montie, A.; Alexei, F.; Licea-Navarro, A.F.; Beman, J.M.; Woyke, T.; Nobile, C.J., (2019). Community ecology across bacteria, archaea and microbial eukaryotes in the sediment and seawater of coastal Puerto Nuevo, Baja California. PLoS ONE 14(2): 1-19 (19 pages).

Vezzulli, L.; Pezzati E.; Brettar, I.; Höfle, M.; Pruzzo, C., (2019). Effects of Global Warming on Vibrio Ecology. 2015, Microbiol. Spectr., 3(3): 1–9 (9 pages).

Wang, L.; Chen, Y.; Huang, H.; Huang, Z.; Chen, H.; Shao, Z., (2015). Isolation and identification of Vibrio campbellii as a bacterial pathogen for luminous vibriosis of Litopenaeus vannamei. Aquacult. Res., 46: 395–404 (10 pages).

Wigand, C.; Roman, C.T.; Davey, E.; Stolt, M.; Johnson, R.; Hanson, A.; Watson, E.B.; Moran, S.B.; Cahoon, D.R.; Lynch, J.L.; Rafferty, P., (2014). Below the disappearing marshes of an urban estuary: historic nitrogen trends and soil structure. Ecological applications: A Publication of the Ecological Society of America, 24(4): 633–649 (17 pages).

Xia, Y.; Sun J.; Chen, D.G., (2018). Exploratory analysis of microbiome data and beyond. In: Xia (ed.). Statistical analysis of microbiome data with R. Singapore: Springer, 191–249 (59 pages).

Yamada, K.D.; Tomii, K.; Katoh, K.; (2016). Application of the MAFFT sequence alignment program to large data—reexamination of the usefulness of chained guide trees Bioinformatics, 32: 21:3246–3251 (6 pages).

Yan, J.; Wu, Y.H.; Meng, F.X.; Wang, C.S.; Xiong, S.L.; Zhang, X.Y.; Zhang, Y.Z.; Xu, X.W., (2016). Pseudoalteromonas gelatinilytica sp. nov., isolated from surface seawater. Int. J. Syst. Evol. Microbiol., 66: 3538–3545 (8 pages).

Zhou J.; Xia B.; Treves, D.S.; Wu, L.Y.; Marsh, T.L.; O’Neill, R.V.; Palumbo, A. V.; Tiedje, J.M., (2002). Spatial and Resource Factors Influencing High Microbial Diversity in Soil. Appl. Env. Microbiol., 68(1): 326–334 (9 pages).

Letters to Editor

GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.