Document Type: ORIGINAL RESEARCH PAPER

Authors

1 Departamento de Ingeniería Ambiental, Universidad de Córdoba, Carrera 6 No. 77- 305, Montería, Colombia

2 Departamento de Gestión Industrial, Agroindustrial y de Operaciones, Universidad de la Costa, Barranquilla, Colombia

3 Doctorado en Ciencias Biológico-Agropecuarias, Universidad Autónoma de Nayarit, México

4 Instituto Tecnológico de Tuxtla Gutiérrez, Depto. Ingeniería Química y Bioquímica. Tuxtla Gutiérrez, Chiapas, México

5 Departamento de Ingeniería Civil y Ambiental, Universidad de la Costa, Barranquilla, Colombia

Abstract

Ciénaga de Mallorquín is a coastal lagoon designated as a RAMSAR site due to its ecological regional and international importance. In this work, the environmental fluid dynamics code explorer modeling system was implemented to determine the spatio-temporal distribution of temperature, dissolved oxygen, chemical oxygen demand and nutrient levels, and assess the trophic status of Ciénaga de Mallorquín. The model was set up with field measurement data taken during transition period and wet season, and secondary information obtained from local authorities and environmental agencies. The results of model simulations were calibrated and verified by the root mean square error method, achieving a consistent fit for all considered variables. Average velocities were between 0.006 m/s and 0.013 m/s during the analyzed periods. The temperature was higher in the wet season than in the transition period (29°C and 31.5°C, respectively). The dissolved oxygen was similar in both periods (6.6 and 6.7 mg/L). NO3 concentrations were higher during the transition period (3.28 mg/L), with a minimum of 1.76 mg/L and a maximum of 5.09 mg/L. The lowest NO3 concentrations were found in the area influenced by the connection with the Caribbean Sea. PO4 concentrations in the wet season were lower than in the transition period (0.20 mg/L). Finally, Ciénaga de Mallorquín exhibits high productivity levels with Trophic State Index > 50 and temporal variations of mesotrophic to eutrophic. The use of Trophic State Index is useful for the management of water body eutrophication and productivity, making it particularly important in aquatic ecosystems.

Graphical Abstract

Highlights

  • Environmental fluid dynamics code explorer modeling system is a robust software that handle flexibly special conditions of the coastal lagoons;
  • Transport of pollutants to determine the Ciénaga Mallorquin water quality dynamics and trophic state were simulated;
  • The lagoon-sea connection allows the water quality improvement and therefore limit the trophic state from mesotrophic to slightly eutrophic.

Keywords

Main Subjects

Andrade, C.A., (2001). Las corrientes superficiales en la cuenca de Colombia observadas con boyas de deriva. Revista Acad. Colomb. Ci. Exact., 25(96): 321-335 (15 pages).

Anthony, A.; Atwood, J.; August, P.; Byron, C.; Cobb, S.; Foster, C.; Fry, C.; Gold, A.; Hagos, K.; Heffner, L.; Kellogg, D. Q.; Lellis-Dibble, K.; Opaluch, J.J.; Oviatt, C.; Pfeiffer-Herbert, A.; Rohr, N.; Smith, L.; Smythe, T.; Swift, J.; Vinhateiro, N., (2009). Coastal Lagoons and Climate Change: Ecological and Social Ramifications in US Atlantic and Gulf Coast Ecosystems. Ecol. Soc., 14(1): 8.

Arrieta, L.; Rosa, J., (2000). Distribución espacio-temporal de la mojarra rayada (Eugerres plumieri) en la ciénaga de Mallorquín. Tesis de grado, Univ. del Atlántico, Barranquilla (78 pages).

Arrieta, L.; Rosa Muñoz, J., (2003). Estructura de la comunidad íctica de la Ciénaga de Mallorquín, Caribe colombiano. Bol. Investig. Mar. Costeras – Invemar., 32(1): 231-242 (12 pages).

Babbin, A.R.; Keil, R.G.; Devol, A.H.; Ward, B.B., (2014). Organic Matter Stoichiometry, Flux, and Oxygen Control Nitrogen Loss in the Ocean. Science., 34(6182): 406-408 (3 pages).

Carlson, R. E., (1977). A trophic state index for lakes. Limnol. Oceanogr., 22(2): 361-369 (9 pages).

Chapman, P.M., (2012). Management of coastal lagoons under climate change. Estuar. Coast. Shelf Sci., 110, 32-35 (4 pages).

Cioffi, F.; Di Eugenio, A.; Gallerano, F., (1995). A new representation of anoxic crises in hypertrophic lagoons. Appl. Math. Model., 19(11): 685-695 (11 pages).

Conan, P.; Pujo-Pay, M.; Agab, M.; Calva-Benítez, L.; Chifflet, S.; Douillet, P.; Dussud, C.; Fichez, R.; Grenz, C.; Gutierrez-Mendieta, F.; Origel-Moreno, M.; Rodríguez-Blanco, A.; Sauret, C.; Severin, T.; Tedetti, M.; Torres-Alvarado, R.; Ghiglione, J.F., (2017). Biogeochemical cycling and phyto-and bacterioplankton communities in a large and shallow tropical lagoon (Términos Lagoon, Mexico) under 2009–2010 El Niño Modoki drought conditions. Biogeosci., 14(4): 959-975 (17 pages).

Contreras, F.; Castañeda, O., (2004). La biodiversidad de las lagunas costeras. Ciencias., 76: 46-56 (11 pages).

Devkota. J.; Fang, X.; Fang, V., (2013). Response Characteristics of the Perdido and Wolf Bay System to Inflows and Sea Level Rise. Br. J. Environ. Clim. Change., 3(2): 229-256 (28 pages).

Fertig, B.; Kennish, M.J.; Sakowicz, G.P., (2013). Changing eelgrass (Zostera marina L.) characteristics in a highly eutrophic temperate coastal lagoon. Aquat. Bot., 104: 70-79 (10 pages).

Galvis, O.S.; Téllez.; A. Lora., (1992). Contribución al conocimiento de las características medio-ambientales de la ciénaga de Mallorquín. VIII Seminario Nacional Ciencia Tecnol. Mar,1: 483-489 (7 pages).

Garcés-Ordóñez, O.; Vivas-Aguas, L.J.; Martínez, M.; Córdoba, T.; Contreras, A.; Obando, P.; Moreno, Y.; Muñoz, J.; Nieto, Y.; Ríos, M.; Sánchez, S.; Sánchez, D., (2016 a). Diagnóstico y Evaluación de la Calidad de las Aguas Marinas y Costeras del Caribe y Pacífico colombianos. Serie de Publicaciones Periódicas del Invemar No. 4. Red de vigilancia para la conservación y protección de las aguas marinas y costeras de Colombia (REDCAM). Informe técnico. INVEMAR, MADS y CAR costeras. Santa Marta (347 pages).

García-Oliva, M.; Pérez-Ruzafa, Á.; Umgiesser, G.; McKiver, W.; Ghezzo, M.; De Pascalis, F.; Marcos, C., (2018). Assessing the hydrodynamic response of the Mar Menor lagoon to dredging inlets interventions through numerical modelling. Water, 10(7): 959-992 (33 pages).

Glibert, P.M.; Burkholder, J.M., (2011). Harmful algal blooms and eutrophication: “strategies” for nutrient uptake and growth outside the Redfield comfort zone. Chin. J. Oceanol. Limnol., 29(4): 724-738 (15 pages).

Hamrick, J.M., (1992). A Three-Dimensional Environmental Fluid Dynamics Computer Code: Theoretical and computational aspects. Special report in applied marine science and ocean engineering, no. 317. Virginia Institute of Marine Science, College of William and Mary (65 pages).

Harley, C.D.G.; Hughes, A.R.; Hultgren, K.M.; Miner, B.G.; Sorte, C.J.B.; Thornber, C.S.; Rodriquez, L.F.; Tomanek., L.; Williams. S.L., (2006). The impacts of climate change in coastal marine systems. Ecol. Lett., 9(2): 228-241 (14 pages).

Hull, V.; Mocenni, C.; Falcucci, M.; Marchettini, N., (2000). A trophodynamic model for the lagoon of Fogliano (Italy) with ecological dependent modifying parameters. Ecol. Model., 134: 153–167 (15 pages).

Hur, J.; Lee, B.M.; Lee, T.H.; Park, D.H., (2010). Estimation of biological oxygen demand and chemical oxygen demand for combined sewer systems using synchronous fluorescence spectra. Sensors. 10(4): 2460-2471 (12 pages).

Itoh, S.; Takeshige, A.; Kasai, A., (2018). Modeling the coastal ecosystem complex: present situation and challenges. Fish Sci., 84: 293–307 (14 pages).

Jeong, S.; Yeon, K.; Hur, Y.; Oh, K., (2010). Salinity intrusion characteristics analysis using EFDC model in the downstream of Geum River. J. of Environ. Sci., 22 (6), pp 934-939 (6 pages).

Ji, Zhen‐Gang., (2017). Hydrodynamics and Water Quality: Modeling Rivers, Lakes, and Estuaries. Ed. John Wiley & Sons Inc., second edition (581 pages).

Jiang, J.; Ri, T.; Pang, T.; Wang, Y.; Wang, P., (2019). Water quality management of heavily contaminated urban rivers using water quality analysis simulation program. Global J. Environ. Sci. Manage., 5(3): 295-308 (13 pages).

Jiménez, P.A.L.; Alemany, V.E.; Alberola, M.C.; Solano, F.J.M., (2003). Metodología para la calibración de modelos de calidad de aguas. Ingeniería del agua., 10(4): 501-516 (16 pages).

Jones, N.R.; McMahon, A.T.; Bowler, M.J., (2001). Modelling historical lake levels and recent climate change at three closed lakes, Western Victoria, Australia (c.1840–1990). J. Hydrol., 246(1–4): 159–180 (22 pages).

Joos, F.; Plattner, G.K.; Stocker, T.F., Körtzinger., A.; Wallace, D.W.R., (2003). Trends in marine dissolved oxygen: implications for ocean circulation changes and the carbon budget. Eos, Transactions, American Geophysical Union, 84(21): 197-207 (8 pages).

Kennish, M.J.; Paerl, H.W., (2010). Coastal lagoons: critical habitats of environmental change. CRC Press, First ed. New York, NY (555 pages).

Liu, H.; Zheng, Z.C.; Young, B.; Harris, T.D., (2019). Three-dimensional numerical modeling of the cyanobacterium Microcystis transport and its population dynamics in a large freshwater reservoir. Ecol. Model., 398; 20-34 (15 pages).

Luo, F.; Li, R., (2009). 3D Water environment simulation for North Jiangsu offshore sea based on EFDC. JWARP. Prot., 1(1): 41-47 (7 pages).

Luo, X.; Li, X., (2018). Using the EFDC model to evaluate the risks of eutrophication in an urban constructed pond from different water supply strategies. Ecol. Model., 372: 1-11 (11 pages).

Marreto, R.N.; Baumgarten, M.G.Z.; Wallner-Kersanach, M., (2017). Trophic quality of waters in the Patos Lagoon estuary: a comparison between its margins and the port channel located in Rio Grande, RS, Brazil. Ac. Limn. Brasil., 29: 1-11 (11 pages).

McCuen, R.H.; Knight, Z.; Cutter, A.G., (2006). Evaluation of the Nash–Sutcliffe efficiency index. J. Hydrol. Eng., 11(6): 597-602 (6 pages).

Ministerio de Ambiente y Desarrollo Sostenible. 1984. Decreto 1594. Usos del agua y residuos líquidos (52 pages).

Miranda, L.B.; Castro, B.M.; Kjerfve, B., (2002). Princípios de oceanografia física de estuários. São Paulo: Ed. da Universidade de São Paulo (417 pages).                     

National Research Council., 2000. Clean coastal waters: understanding and reducing the effects of nutrient pollution. National Academy Press (428 pages).

Newton, A.; Icely, J.; Cristina, S.; Brito, A.; Cardoso, A.C.; Colijn, F.; Zaldívar, J.M., (2014). An overview of ecological status, vulnerability and future perspectives of European large shallow, semi-enclosed coastal systems, lagoons and transitional waters. Estuarine Coast. Shelf Sci., 140: 95–122 (28 pages).

Newton, A.; Brito, A.C.; Icely, J.D.; Delorez, V.; Clara, I.; Angus, S., (2018). Assessing, quantifying and valuing the ecosystem services of coastal lagoons. J. Nat. Conserv., 44, 50–65 (15 pages).

Panda, U.S.; Mahanty, M.M.; Rao, V.R.; Patra, S.; Mishra, P., (2015). Hydrodynamics and water quality in Chilika Lagoon-A modelling approach. Procedia Eng., 116: 639-646 (8 pages).

Park, K.; Jung, H.S.; Kim, H.S.; Ahn, S.M., (2005). Three-dimensional hydrodynamic eutrophication

model (HEM-3D): application to Kwang-Yang Bay, Korea. Mar. Environ. Res., 60: 171–193 (23 pages).

Parson, T.R.; Maitia, Y.; Lalli, C.M., (1984). A manual of Chemical and Biological Methods for Sea Water Analysis. Pergamonn Press, Oxford (135 pages).

Pérez-Ruzafa, A.; Marcos, C.; Pérez-Ruzafa, I.M.; Pérez-Marcos, M., (2011). Coastal lagoons: “transitional ecosystems” between transitional and coastal waters. J. Coast. Conserv., 15(3): 369-392 (24 pages).

Pérez-Ruzafa, A.; Marcos, C., (2012). Fisheries in coastal lagoons: An assumed but poorly researched aspect of the ecology and functioning of coastal lagoons. Estuarine Coastal Shelf Sci., 110:15–31 (17 pages).

Pérez-Ruzafa, A.; Pérez-Ruzafa, I. M.; Newton, A.; Marcos, C., (2019). Coastal lagoons: environmental variability, ecosystem complexity and goods and services uniformity, in Coasts and Estuaries, the Future, eds E. Wolanski, J. Day, M. Elliott, and R. Ramesh (New York, NY: Elsevier), 253–276 (23 pages).

Poveda, G., (2004). La hidroclimatología de Colombia: una síntesis desde la escala inter-decadal hasta la escala diurna. Revista Acad. Colomb. Ci. Exact. 28(107): 201-222 (22 pages).

Quamrul, A.; Benson, B.; Visser, J.; Gang, D., (2016). Response of estuarine phytoplankton to nutrient and spatio temporal pattern of physico-chemical water quality parameters in little Vermilion Bay, Louisiana. Ecol. Inf., 32: 79-90 (12 pages).

Ramesh, R.; Chen, Z.; Cummins, V.; Day, J.; D’Elia, C.; Dennison, B.; Forbes, D.L.; Glaeser, B.; Glaser, M.; Glavovic, B.; Kremer, H.; Lange, M.; Larsen, J.N.; Le Tissier, M.; Newton, A.; Pelling, M.; Purvaja, R.; Wolanski, E., (2015). Land–ocean interactions in the coastal zone: Past, present and future. Anthropocene., 12: 85-98 (13 pages).

Rodellas, V.; Stieglitz, T.C.; Andrisoa, A.; Cook, P.G.; Raimbault, P.; Tamborski, J.J.; Beek, P.; Radakovitch, O., (2018). Groundwater-driven nutrient inputs to coastal lagoons: The relevance of lagoon water recirculation as a conveyor of dissolved nutrients. Sci. Total Environ., 642 (15): 764-780 (17 pages).

Romero-Sierra, P.; Rivas, D.; Almazán-Becerril, A.; Hernández-Terrones, L., (2018). Hydrochemistry and hydrodynamics of a Mexican Caribbean Lagoon: Nichupté Lagoon System. Estuar. Coast. Shelf Sci., 215: 185-198 (14 pages).

Shin, S.; Her, Y.; Song, J.H.; Kang, M.S., (2019). Integrated sediment transport process modeling by coupling Soil and Water Assessment Tool and Environmental Fluid Dynamics Code. Environ. Modell. Software. 116: 26-39 (14 pages).

Torres-Bejarano, F.; Coba, J.P.; Cuevas, C.R.; León, H.R.; Rodelo, R.C., (2016). La modelación hidrodinámica para la gestión hídrica del embalse del Guájaro, Colombia. Rev. Int. Metod. Numer., 32(3): 163-172 (10 pages).

Torres-Bejarano, F.; Couder-Castañeda, C.; Ramirez-León, H.; Hernández-Gómez, J.J.; Rodriguez-Cuevas, C.; Herrera-Diaz, I.E.; Barrios-Piña, H., (2019). Numerical modelling of heavy metal dynamics in a river-lagoon system. Math. Problems Eng., Article ID 8485031 (24 pages).

Tetra Tech., (2007). The Environmental Fluid Dynamics Code Theory and Computation. Volume 1: Hydrodynamics and Mass Transport. Tetra Tech, Inc. Fairfax (60 pages).

UNESCO., (1981). Tenth report of the Joint Panel on Oceanographic Tables and Standards. UNESCO Tech. Pap. in Marine Science No. 36. UNESCO, Paris, (25 pages).

Velasco, A.M.; Pérez-Ruzafa, A.; Martínez-Paz, J. M.; Marcos, C., (2018). Ecosystem services and main environmental risks in a coastal lagoon (Mar Menor, Murcia, SE Spain): the public perception. J. Nat. Conserv., 43, 180–189 (19 pages).

Wang, C.; Shen, C.; Wang, P.F.; Qian, J.; Hou, J.; Liu, J.J., (2013). Modeling of sediment and heavy metal transport in Taihu Lake, China. J. Hydrodyn., 25(3): 379–387 (9 pages).

Woodward, F.I., (1987). Climate and plant distribution. Cambridge University Press, Cambridge, UK (188 pages).

Xia, M.; Craig, P. M.; Wallen, C. M.; Stoddard, A.; Poulsen, J. M.; Peng, M.; Schaeffer, B.; Liu, Z., (2011). Numerical Simulation of Salinity and Dissolved Oxygen at Perdido Bay and Adjacent Coastal Ocean. J. of Coastal Res., 27 (1): 73-86 (14 pages).

Xia, M.; Jiang, L., (2015). Influence of wind and river discharge on the hypoxia in a shallow bay. Oc. Dynamics., 65: 665–678 (13 pages).

Zhang, C. X.; You, X. Y., (2017). Application of EFDC model to grading the eutrophic state of reservoir: Case study in Tianjin Erwangzhuang Reservoir, China. Eng. Appl. Comput. Fluid Mech., 11(1): 111-126 (15 pages).

Zou, R.; Li, Y.; Zhao, L.; Liu, Y., (2014). Exploring the Mechanism of Catastrophic Regime Shift in a Shallow Plateau Lake: A Three-Dimensional Water Quality Modeling Approach. Developments in Env. Model., 26: 411-435 (25 pages).


Letters to Editor


GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.

CAPTCHA Image