1 Student Research Committee, Qom University of Medical Sciences, Qom, Iran.

2 Research Center for Environmental Pollutants, Qom University of Medical Sciences, Qom, Iran

3 Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran


Ciprofloxacin antibiotic that is used to cure several kinds of bacterial infections have a high solubility capacity in water. The influent of ciprofloxacin to water resources in a low concentration affect the photosynthesis of plants, transforms the morphological structure of the algae, and then disrupts the aquatic ecosystem. 75% of this compound is excreted from the body down to the wastewater which should be removed. BiFeO3, a bismuth-based semiconductor photocatalyst that is responsive to visible light, has been recently used to remove organic pollutants from water. In this study, the optimal conditions for removing ciprofloxacin from aqueous solutions by the BiFeO3 process were investigated. Effective parameters namely pH, reaction time, ciprofloxacin initial concentration, BiFeO3 dose, and temperature on ciprofloxacin removal were studied by using response surface methodology. The validity and adequacy of the proposed model was confirmed by the corresponding statistics (i.e. F-values of 14.79 and 1.67 and p-values of 2 = 0.9107, R2adjusted = 0.8492, R2 predicted = 0.70, AP = 16.761). Hence the Ciprofloxacin removal efficiency reached 100% in the best condition (pH 6, initial concentration of 1 mg/L, BiFeO3 dosage of 2.5 g/L, reaction temperature of 30° C, and process time of 46 min).

Graphical Abstract


  • The most effective parameter in CIP removal was the BFO dosage with the highest positive effect;
  • The best conditions for cefexime removal was:  pH 6, initial concentration of 1 mg/L, BiFeO3 dosage of 2.5 g/L, reaction temperature of 30°C, and process time of 46 minutes;
  • BiFeO3 nanocomposites can be successfully employed to remove ciprofloxacin antibiotic from aqueous environments.


Main Subjects

Amraei, B.; Rezaei Kalantary, R.; Jonidi Jafari, A.; Gholami, M., (2017). Efficiency of CuFe2O4 bimetallic in removing amoxicillin from aqueous solutions. J. Mazandaran Univ. Med. Sci., 27(147): 259-275 (17 pages).

Aravind, J., Kanmani, P., Sudha, G., Balan, R., (2015). Optimization of chromium (VI) biosorption using gooseberry seeds by response surface methodology. Global J. Environ. Sci. Manage., 2(1): 61-68 (8 pages).

Azargohar, R.; Dalai, A., (2005). Production of activated carbon from Luscar char: experimental and modeling studies. Micropor. Mesopor. Mat., 85(3):219-25. (7 pages).

Bahrami Asl, F.; Kermani, M.; Farzadkia, M.; Esrafili, A.; Salahshour Arian, S.; Zeynalzadeh, D., (2015). Removal of metronidazole from aqueous solution using ozonation process. J. Mazandaran Univ. Med. Sci., 24(121): 131-140 (10 pages).

Balarak, D.; Mostafapour, F.; Joghataei, A., (2016). Experimental and kinetic studies on Penicillin G adsorption by Lemna minor. Br. J. Pharm. Res., 9(5): 1-10 (10 pages).

Ehera, SK.; Meena, H.; Chakraborty, S.; Meikap, B., (2018). Application of response surface methodology (RSM) for optimization of leaching parameters for ash reduction from low-grade coal. Int. J. Mining Sci. Technol., 28(4): 621-9 (9 pages).

Bhaumik, M.A.; Maity,A.;  Srinivasu, V.; Onyango, M., (2011). Enhanced removal of Cr (VI) from aqueous solution using polypyrrole/Fe3O4 magnetic nanocomposite. J. hazard. Mater., 190(1): 381-390 (10 pages).

Di, L.; Yang, G.; Xian, J.; Ma, J.; Jiang, R.; Wei, Z., (2014). Enhanced photocatalytic activity of BiFeO3 particles by surface decoration with Ag nanoparticles. J. Mater. Sci. - Mater. Electron., 25(6): 2463-2469 (7 pages).

Elmolla, E.S.; Chaudhuri, M., (2010). Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis. J. Desalination. 252(1–3): 46-52 (7 pages).

Fakhri, A.; Adami, S., (2014). Adsorption and thermodynamic study of Cephalosporins antibiotics from aqueous solution onto MgO nanoparticles. J. Taiwan Inst. Chem. Eng., 45(3): 1001-1006 (6 pages).

Farhadi, S.; Aminzadeh, B.; Torabian, A.; Khatibikamal, V.; Fard, M., (2012). Comparison of COD removal from pharmaceutical wastewater by electrocoagulation, photoelectrocoagulation, peroxi-electrocoagulation and peroxi-photoelectrocoagulation processes. J. hazard. Mater., 219: 35-42 (8 pages).

Gao, F.; Chen, X.; Yin, K.; Dong, S.; Ren, Z.; Yuan, F.; Yu, T.; Zou, Z.; Liu, J., (2007). Visible‐Light Photocatalytic Properties of Weak Magnetic BiFeO3 Nanoparticles. Adv. Mater., 19(19): 2889-2892 (4 pages).

Garoma, T.; Umamaheshwar, S.K.; Mumper, A., (2010). Removal of sulfadiazine, sulfamethizole, sulfamethoxazole, and sulfathiazole from aqueous solution by ozonation. Chemosphere., 79(8): 814-820 (7 pages).

Ghauch, A.; Tuqan, A.; Assi, H., (2009). Antibiotic removal from water: Elimination of amoxicillin and ampicillin by microscale and nanoscale iron particles. Environ. Pollut., 157(5): 1626-1635 (10 pages).

Githinji, L. J.; Musey, M.K.; Ankumah, R.O., (2011). Evaluation of the fate of ciprofloxacin and amoxicillin in domestic wastewater. Water Air Soil Pollut., 219(1-4): 191-201 (10 pages).

González-Pleiter, M.; Gonzalo, S.; Rodea-Palomares, I.; Leganés, F.; Rosal, R.; Boltes, K.; Marco, E.; Fernández-Piñas, F., (2013). Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: Implications for environmental risk assessment. Water Res., 47(6): 2050-2064 (15 pages).

Hijosa-Valsero, M.; Fink, G.; Schlüsener, M.; Sidrach-Cardona, R.; Martín-Villacorta, J.; Ternes, T.; Bécares, E., (2011). Removal of antibiotics from urban wastewater by constructed wetland optimization. Chemosphere. 83(5): 713-719 (7 pages).

Homem, V.; Alves, A.; Santos, L., (2010). Amoxicillin degradation at ppb levels by Fenton's oxidation using design of experiments. Sci. Total Environ., 408(24): 6272-6280 (9 pages).

Jung, Y.; Gi Kim, G.; Yoon, Y.; Kang, J.; Hong, Y.; Wook Kim, H., (2012). Removal of amoxicillin by UV and UVH2O2 processes. Sci. Total Environ: 160-167 (8 pages).

Lotey, G.S.; Verma, N., (2014). Synthesis and characterization of BiFeO3 nanowires and their applications in dye-sensitized solar cells. Mater. Sci. Semicond. Process., 21: 206-211 (6 pages).

Meng, L.-W.; Li, X.; Wang, K.; Ma, K.L.; Zhang, J., (2015). Influence of the amoxicillin concentration on organics removal and microbial community structure in an anaerobic EGSB reactor treating with antibiotic wastewater. Chem. Eng. J., 274: 94-101 (8 pages).

Mojir Shaibani, P.; Prashanthi, K.; Sohrabi, A.; Thundat, T., (2013). Photocatalytic BiFeO3 nanofibrous mats for effective water treatment. J. Nanotechnol: 1-7 (7 pages).

Montgomery, D.O.,(2017). Design and analysis of experiments, john wiley and sons (630 pages).

Mostafaloo, R.; Mahmoudian, M.H.; Asadi-Ghalhari, M., (2019). BiFeO3/Magnetic Nanocomposites for the Photocatalytic Degradation of Cefixime from Aqueous Solutions under visible light. J. Photochem. Photobiol., 382:111926- 111933 (8 pages).

Mostafaloo, R.; Yari, A.R.; Mohammadi, M.J.; Khaniabadi, Y.O.; Asadi-Ghalhari, M., (2019). Optimization of the electrocoagulation process on the effectiveness of removal of Cefixime antibiotic from aqueous solutions. Desalination. Water Treat., 144: 138-144 (7 pages).

Parsa, J. B.; Panah, T.M.; Chianeh, F.N., (2016). Removal of ciprofloxacin from aqueous solution by a continuous flow electro-coagulation process. Korean J. Chem. Eng., 33(3): 893-901 (11 pages).

Ramezanalizadeh, H., (2017). Design, preparation and characterization of a novel BiFeO3/CuWO4 heterojunction catalyst for one-pot synthesis of trisubstituted imidazoles. Iran Chem. Commun., 1-17 (17 pages).

Roy, P.; Dey, U.; Chattoraj, S.; Mukhopadhyay, D.; Mondal, N., (2017). Modeling of the adsorptive removal of arsenic (III) using plant biomass: a bioremedial approach. Appl. Water Sci., 7(3): 1307-1321 (15 pages).

Roy, P.; Mondal, N.; Das, K., (2014). Modeling of the adsorptive removal of arsenic: a statistical approach. J. Environ. Chem. Eng., 2(1): 585-597 (18 pages).

Samadi, M.T.; Shokoohi, R.; Araghchian, M.; Tarlani Azar, M., (2014). Amoxicillin Removal from Aquatic Solutions Using Multi-Walled Carbon Nanotubes. J. Mazandaran Univ. Med. Sci., 24(117): 103-115 (13 pages).

Samadi, M.T.; Shokoohi, R.; Harati, R., (2015). Evaluation of Synthesized Fe3O4/MWCNTs Nanocomposite Used in the Heterogeneous Fenton Process for the Removal of Ciprofloxacin Antibiotic. J. Water Wastewater., (5): 80-89 (10 pages).

Samarghandi, M.; Ahmadisoost, G.H.; Shabanloo, A.; Majidi, S.; Rezaee Vahidian, H.; Maroufi, S.; Shahmoradi, M.; Mehralipour, J., (2017). Optimization of Electrocoagulation via Response Surface Methodology to Remove Ciprofloxacin from Aqueous Media. J. Water Weastewater., 28(2): 12-21 (10 pages).

Shariati, S.; Faraji, M.; Yamini, Y.; Rajabi, A.A., (2011). Fe3O4 magnetic nanoparticles modified with sodium dodecyl sulfate for removal of safranin O dye from aqueous solutions. J. Desalination. 270(1): 160-165 (6 pages).

Shaykhi, Z.M.; Zinatizadeh, A., (2014). Statistical modeling of photocatalytic degradation of synthetic amoxicillin wastewater (SAW) in an immobilized TiO2 photocatalytic reactor using response surface methodology (RSM). J. Taiwan Inst. Chem. Eng., 45(4): 1717-1726 (10 pages).

Tang, S.C.; Lo, L.M., (2013). Magnetic nanoparticles: essential factors for sustainable environmental applications. Water Res., 47(8): 2613-2632 (20 pages).

Ullah, I.; Ali, s.; Hanif, M.A.; Shahid, S.A., (2012). Nanoscience for environmental remediation: a review. Int .J .Chem. Biochem. sci., 2(1): 60-77 (18 pages).

Wang, Y.-J.; Jia, D.A.; Sun, R.J.; Zhu, H.W.; Zhou, D.M., (2008). Adsorption and cosorption of tetracycline and copper (II) on montmorillonite as affected by solution pH. Environ. Sci. Technol., 42(9): 3254-3259 (6 pages).

Wang, C-J.; Li, Z.; Jiang, W-T.; Jean, J-S.; Liu, C-C., (2010). Cation exchange interaction between antibiotic ciprofloxacin and montmorillonite. J. Hazard. Mater., 183(1-3): 309-314 (6 pages).

Xue, Z.; Wang, T.; Chen, B.; Malkoske, T.; Yu, S.; Tang, Y., (2015). Degradation of Tetracycline with BiFeO3 Prepared by a Simple Hydrothermal Method. Mater., 8(9): 6360-6378 (19 pages).

Yin, J.; Liao, G.; Zhou, J.; Huang, C.; Ling, Y.; Lu, P.; Li, L., (2016). High performance of magnetic BiFeO3 nanoparticle-mediated photocatalytic ozonation for wastewater decontamination. Sep. Purif. Technol., 168: 134-140 (7 pages).

Yoosefian, M.; Ahmadzadeh, S.; Aghasi, M.; Dolatabadi, M., (2016). Optimization of electrocoagulation process for efficient removal of ciprofloxacin antibiotic using iron electrode; kinetic and isotherm studies of adsorption. J. Mol. Liq., 225: 544-553 (10 pages).

Yuan, P.; Fan, M.; Yang, D.; He, H.; Liu, D.; Yuan, A.; Zhu, J.; Chen, T., (2009). Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent chromium [Cr (VI)] from aqueous solutions. J. Hazard. Mater., 166(2): 821-829 (9 pages).

Zhaohui, L.; Hanlie, H.; Libing, L.; Caren, J.; Ackleyc, L.; Schulzc, R,; Emard, M., (2011). A mechanistic study of ciprofloxacin removal by kaolinite. Colloids Surf., B., 88 88: 339-344 (6 pages).

Zhou, C.; Huang, D,; Xu, P.; Zeng, G.; Huang, J.; Shi, T,; Lai, C.; Zhang, C.; Cheng, M.; Lu, Y., (2019). Efficient visible light driven degradation of sulfamethazine and tetracycline by salicylic acid modified polymeric carbon nitride via charge transfer. Chem. Eng. J., 370: 1077-1086 (10 pages).

Zhou, C.; Lai, C.; Huang, D.; Zeng, G.; Zhang, C.; Cheng, M.; Hu, L.; Wan, J.; Xiong, W.; Wen, M.; (2018). Highly porous carbon nitride by supramolecular preassembly of monomers for photocatalytic removal of sulfamethazine under visible light driven. Appl. Catal., B., 220: 202-210 (9 pages).

Zhou, C.; Xu, P.; Lai, C.; Zhang, C.; Zeng, G.; Huang, D.; Cheng, M.; Hu, L.; Xiong, W.; Wen, X., (2019). Rational design of graphic carbon nitride copolymers by molecular doping for visible-light-driven degradation of aqueous sulfamethazine and hydrogen evolution. Chem. Eng. J., 359: 186-196 (11 pages).

Letters to Editor

GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.