Department of Geography, Faculty of Arts, The University of Jordan, Amman, Jordan


This study analyzes the characteristics of land use/land cover change in Jordan’s Irbid governorate, 1984–2018, and predicts future land use/land cover for 2030 and 2050 using a cellular automata-Markov model. The results inform planners and decision makers of past and current spatial dynamics of land use/land cover change and predicted urban expansion, for a better understanding and successful planning. Satellite images of Landsat 5-thematic mapper and Landsat 8 operational land imager for the years 1984, 1994, 2004, 2015 and 2018 were used to explore the characteristics of land use/land cover for this study. The results indicate that the built-up area expanded by 386.9% during the study period and predict further expansion by 19.5% and 64.6% from 2015 to 2030 and 2050 respectively. The areas around the central and eastern parts of the governorate are predicted to have significant expansion of the built-up area by these dates, which should be taken into consideration in future plans. Land use/land cover change and urban expansion in Irbid are primarily caused by the high rate of population growth rate as a direct result of receiving large numbers of immigrants from Syria and Palestine in addition to the natural increase of population and other socio-economic changes. 

Graphical Abstract


  • Land use and land cover types have been changing in Irbid governorate, Jordan due to rapid population and urban growth;
  • Fertile plains in the study area have been converted to built-up land, a trend that will become the main feature of LULC in the future;
  • The irrigated areas have increased, with intensive use of land, to meet the population demand for food;
  • The CA-Markov model proved to be a powerful tool for analyzing LULC dynamic change and predicting future scenarios.


Main Subjects

Abu-Zanat, M.W.; Ruyle, G.B.; Abdel-Hamid, N.F., (2004). Increasing range production from fodder shrubs in low rainfall areas. J. Arid Environ., 59(2): 205-216 (12 pages).

Al-Kofahi, S. D.; Jamhawi, M. M.; Hajahjah, Z. A., (2018). Investigating the current status of geospatial data and urban growth indicators in Jordan and Irbid municipality: implications for urban and environmental planning. Environment, development and sustainability, 20(3): 1067-1083 (17 pages).

Al-shalabi, M.; Billa, L.; Pradhan, B.; Mansor, S.; Al-Sharif, A.A., (2013). Modelling urban growth evolution and land-use changes using GIS based cellular automata and SLEUTH models: the case of Sana’a metropolitan city, Yemen. Environ. Earth Sci., 70(1): 425-437 (13 pages).

Awawdeh, M.; Nawafleh, A., (2008). A GIS-based EPIK model for assessing aquifer vulnerability in Irbid Governorate, North Jordan. Jordan J. Civil Eng., 2(3): 267-278 (12 pages).‏

Awawdeh, M.; Jaradat, R.; Al Qudah, K.; Abu-Jaber, N.; Awawdeh, M., (2019). A GIS-based Hydrogeological and Geophysical Study for the Analysis of Potential Water Infiltration in the Upper Yarmouk River Basin, North Jordan. Jordan J. Earth Environ. Sci., 10 (3): 136-144 (9 pages).‏

Bani Hani, M., (2005). Management of irrigation water in Jordan. AARDO – International Workshop: Role of modern irrigation techniques in improving food security.

Bin, P.; Tao, P., (2010). Land use system dynamic modeling: literature review and future research direction in China. Progress Geogr., 29(9), 1060-1066 (7 pages).‏

de Noronha Vaz, E.; Walczynska, A.; Nijkamp, P., (2013). Regional challenges in tourist wetland systems: an integrated approach to the Ria Formosa in the Algarve, Portugal. Reg. Environ. Change, 13(1): 33-42 (10 pages).‏

Department of Statistics, (2019) Jordan Statistical Yearbook 2018, Amman, Jordan.

Al-Bakri, J., Saoub, H., Nickling, W., Suleiman, A., Salahat, M., Khresat, S., & Kandakji, T. (2012, October). Remote sensing indices for monitoring land degradation in a semiarid to arid basin in Jordan. In Earth Resources and Environmental Remote Sensing/GIS Applications III (Vol. 8538, p. 853810). International Society for Optics and Photonics (10 pages).‏

Eastman J.R., (2016). TerrSet Geospatial Monitoring and Modeling System - Clark University, Worcester. Source code 1987-2016 (30 pages).

Farhan, Y.; Zregat, D; Farhan, I. (2013). Spatial estimation of soil erosion risk using RUSLE approach, RS, and GIS techniques: a case study of Kufranja watershed, Northern Jordan J. Water Resour. Prot., 5(12): 1247 (15 pages).‏

Gillanders, S. N.; Coops, N. C.; Wulder, M.A.; Goodwin, N. R., (2008). Application of landsat satellite imagery to monitor land-cover changes at the Athabasca Oil Sands, Alberta, Canada. Can. Geogr, 52 (4), 466-485 (20 pages).

Guan, D.; Gao, W.; Watari, K.; Fukahori, H., (2008). Land use change of Kitakyushu based on landscape ecology and Markov model. J. Geog. Sci., 18(4): 455-468 (24 pages).

Han, H.; Yang, C.; Song, J., (2015). Scenario simulation and the prediction of land use and land cover change in Beijing, China. Sustainability. 7(4): 4260-4279 (20 pages).

He, C.; Pan, Y.; Shi, P.; Li, X.; Chen, J.; Li, Y.; Li, J., (2005). Developing land use scenario dynamics model by the integration of system dynamics model and cellular automata model. Sci. China Ser. D: Earth Sci., 48(11): 1979-1989 (11 pages).

Jiansheng, W.; Zhe, F.E.N.G.; Yang, G.A.O.; Xiulan, H.U.A.N.G.; Hongmeng, L.I.U.; Li, H.U.A.N.G., (2012). Recent progresses on the application and improvement of the CLUE-S model. Progress in Geography, (1): 3-10‏ (8 pages).

JMD, (2019). Climate information: rainfall averages. Jordan Meteorological Department. Amman, Jordan.

Khawaldah, H.A., (2016). A prediction of future land use/land cover in Amman area using GIS-based Markov Model and remote sensing. J. Geogr. Inf. Syst., 8(03): 412-427 (16 pages).‏

Khresat, S.A.; Rawajfih, Z.; Mohammad, M., (1998). Morphological, physical and chemical properties of selected soils in the arid and semi-arid region in north-western Jordan. J. Arid. Environ., 40(1): 15-25 (11 pages).

Margane, A.; Hobler, M.; Subah, A., (1999). Mapping of Groundwater Vulnerability and Hazards to Groundwater in the Irbid Area, N-Jordan. Z. Angew. Geol., 45(4): 175-187 (13 pages).

Memarian, H.; Balasundram, S.K.; Talib, J. B.; Sung, C.T.B.; Sood, A. M.; Abbaspour, K., (2012). Validation of CA-Markov for simulation of land use and cover change in the Langat Basin, Malaysia. J. Geogr. Inf. Syst., 4(6): 542-554 (13 pages).

Meyer, W.B.; Turner, B.L., (1992). Human population growth and global land-use/cover change. Ann. Rev. Ecol. Syst., 23(1): 39-61 (23 pages).‏

Munthali, M. G.; Davis, N.; Adeola, A.M.; Botai, J.O.; Kamwi, J. M.; Chisale, H.L.; Orimoogunje, O.O., (2019). Local Perception of Drivers of Land-Use and Land-Cover Change Dynamics across Dedza District, Central Malawi Region. Sustainability, 11(3): 832 (25 pages).

Munthali, K.G.; Murayama, Y., (2011). Land use/cover change detection and analysis for Dzalanyama forest reserve, Lilongwe, Malawi. Procedia- Soc. Behav. Sci., 21: 203-211 (9 pages).

Odeh, T.; Mohammad, A. H.; Hussein, H.; Ismail, M.; Almomani, T., (2019). Over-pumping of groundwater in Irbid governorate, northern Jordan: a conceptual model to analyze the effects of urbanization and agricultural activities on groundwater levels and salinity. Environ. Earth Sci., 78(1): 40: 1-12‏ (12 pages).‏

Parker, D.C.; Manson, S.M.; Janssen, M.A.; Hoffmann, M.J.; Deadman, P., (2003). Multi-agent systems for the simulation of land-use and land-cover change: a review. Annals Association Am. Geogr., 93(2): 314-337 (24 pages).

Pontius Jr, R.G.; Millones, M., (2011). Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment. Int. J. Remote Sens., 32(15): 4407-4429 (23 pages).

Qiu, Y.; Lu, J., (2018). Dynamic simulation of Spartina alterniflora based on CA-Markov model--a case study of Xiangshan bay of Ningbo City, China. Aquat. Invasions, 13(2): 299–309 (11 pages).

Ridd, M.K.; Hipple, J.D., (2006). Remote Sensing of Human Settlements: Manual of Remote Sensing, 3rd Edition. American Society for Photogrammetry and Remote Sensing. ISBN 1-57083-077-0.

Sexton, J.O.; Song, X.; Huang, C.; Channan, S., (2013) Urban growth of the Washington, D.C.-Baltimore, MD metropolitan region from 1984 to 2010 by annual, landsat-based estimates of impervious cover. Remote Sens. Environ., 129: 42-53 (12 pages).

Singh, S. K.; Mustak, S.; Srivastava, P. K.; Szabó, S.; Islam, T., (2015). Predicting spatial and decadal LULC changes through cellular automata Markov chain models using earth observation datasets and geo-information. Environ. Process., 2(1), 61-78. (18 pages).

Tarrad, M., (2014). Urban Planning Response to Population Growth in Jordanian Cities (Irbid City as Case Study). Res. J. Appl. Sci. Eng. Technol., 7(20): 4275-4280 (6 pages).

UNRWA, (2019). Irbid camp. Jordan. The United Nations Relief and Work Agency

Vandermeer, J. (2010). How populations grow: the exponential and logistic equations. Nature Education Knowledge, 3(10): 15.‏

Veldkamp, A.; Verburg, P.H.; Kok, K.G.H.J.; De Koning, G.H.J.; Priess, J.; Bergsma, A.R., (2001). The need for scale sensitive approaches in spatially explicit land use change modeling. Environ. Model. Assess., 6(2): 111-121 (11 pages).

Verburg, P.H.; Eickhout, B.; van Meijl, H., (2008). A multi-scale, multi-model approach for analyzing the future dynamics of European land use. Ann. Region. Sci., 42(1): 57-77 (21 pages).

Verburg P.; Overmars K., (2007) Dynamic Simulation of Land-Use Change Trajectories with the Clue-S Model. In: Koomen E.; Stillwell J.; Bakema A.; Scholten H.J., (eds) Modelling Land-Use Change. The GeoJournal Library, vol 90. Springer, Dordrecht (17 Pages).

Wang, S.; Zhang, Z.; Wang, X., (2014). Land use change and prediction in the Baimahe Basin using GIS and CA-Markov model. In IOP conference series: Earth Environ. Sci., 17(1): 012074. IOP Publishing (6 pages).

Wu, X.Q.; Hu, Y.M.; He, H.S.; Bu, R.C., (2008). Accuracy evaluation and its application of SLEUTH urban growth model. Geomatics and Information Science of Wuhan University, 33(3): 293-296 (4 pages).

Yuan, T.; Yiping, X.; Lei, Z.; Danqing, L., (2015). Land use and cover change simulation and prediction in Hangzhou city based on CA-Markov model. International Proceedings of Chemical. Biol. Environ. Eng., 90: 108-113 (6 pages).

Letters to Editor

GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.