Document Type: REVIEW PAPER


Department of System Analysis and Decision Making, Ural Federal University, Ekaterinburg, Russian Federation


Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affect the performance of an algorithm, however, it is yet to be known why an algorithm is preferred over the other for a certain task. The work aims at highlighting the underlying principles of machine learning techniques and about their role in enhancing the prediction performance. The study adopts, 38 most relevant studies in the field of environmental science and engineering which have applied machine learning techniques during last 6 years. The review conducted explores several aspects of the studies such as: 1) the role of input predictors to improve the prediction accuracy; 2) geographically where these studies were conducted; 3) the major techniques applied for pollutant concentration estimation or forecasting; and 4) whether these techniques were based on Linear Regression, Neural Network, Support Vector Machine or Ensemble learning algorithms. The results obtained suggest that, machine learning techniques are mainly conducted in continent Europe and America. Furthermore a factorial analysis named multi-component analysis performed show that pollution estimation is generally performed by using ensemble learning and linear regression based approaches, whereas, forecasting tasks tend to implement neural networks and support vector machines based algorithms.

Graphical Abstract


  • Studies dedicated to estimation modeling are 1.5 times more than that of forecast modeling.
  • Estimation based studies mainly apply ensemble learning and regression algorithms, whereas forecasting tasks are tend to use NN and SVM based approaches.
  • Predictive features like land use and satellite images have a strong association with estimation models, but their correlation with forest models is weak.
  • Ensemble learning are highly reliable techniques with an average correlation coefficient equal to 0.79 but their applications in forecast modeling are limited. 


Main Subjects

Abu-Awad, Y.; Koutrakis, P.; Coull, B.A.; Schwartz, J., (2002). A spatio-temporal prediction model based on support vector machine regression: Ambient Black Carbon in three New England States. Environ. Res., 159: 427- 434 (8 pages).

Abdul-Wahab, S.A.; Al-Alawi, S.M., (2002). Assessment and prediction of tropospheric ozone concentration levels using artificial neural networks. Environ Modell Software, 17: 219-228 (10 pages).

Adam-Poupart, A.; Brand, A.; Fournier, M.; Jerrett, M.; Smargiassi, A. (2014). Spatiotemporal modeling of ozone levels in Quebec (Canada): a comparison of kriging, land-use regression (LUR), and combined Bayesian maximum entropy--LUR approaches. Environ. Health Perspect., 122: 970-976 (7 pages).

Alfaro, E.; Garcı́a, N.; Gámez, M.; Elizondo, D., (2008). Bankruptcy forecasting: An empirical comparison of AdaBoost and neural networks. Decis. Support Syst., 45: 110-122 (13 pages).

Araki, S.; Shima, M.; Yamamoto, K. (2018). Spatiotemporal land use random forest model for estimating metropolitan NO 2 exposure in Japan. Sci. Total Environ., 634: 1269-1277 (8 pages).

Awad, Y. A.; Koutrakis, P.; Coull, B. A.; Schwartz, J. (2017). A spatio-temporal prediction model based on support vector machine regression: Ambient Black Carbon in three New England States. Environ. Res., 159: 427-434 (8 pages).

Baklanov, A. (2000). Application of CFD methods for modeling in air pollution problems: possibilities and gaps. In Urban Air Quality: Measurement, Model. Manage., 181-189 (8 pages). Springer

Beckerman, B. S.; Jerrett, M.; Martin, R. V.; Donkelaar, A.; Ross, Z.; Burnett, R. T. (2013). Application of the deletion/substitution/addition algorithm to selecting land use regression models for interpolating air pollution measurements in California. Atmos Environ., 77: 172-177 (6 pages).

Bougoudis, I.; Demertzis, K.; Iliadis, L. (2016). HISYCOL a hybrid computational intelligence system for combined machine learning: the case of air pollution modeling in Athens. Comput. Appl., 27: 1191-1206 (15 pages).

Brokamp, C.; Jandarov, R.; Rao, M. B., LeMasters, G.; Ryan, P. (2017). Exposure assessment models for elemental components of particulate matter in an urban environment: A comparison of regression and random forest approaches. Atmos. Environ., 151, 1-11 (11 pages).

Brunekreef, B.; Holgate, S. T. (2002). Air pollution and health. The lancet., 360(9341): 1233-1242 (10 pages).

Brunelli, U.; Piazza, V.; Pignato, L.; Sorbello, F.; Vitabile, S., (2007). Two-days ahead prediction of daily maximum concentrations of SO2, O3, PM10, NO2, CO in the urban area of Palermo, Italy. Atmos. Environ., 41, 2967-2995 (29 pages).

Cannon, A. J.; Lord, E. R., (2000).. Forecasting summertime surface-level ozone concentrations in the Lower Fraser Valley of British Columbia: An ensemble neural network approach. J. Air Waste Manage. Assoc., 50: 322-339 (18 pages).

Capilla, C., (2014). Multilayer perceptron and regression modelling to forecast hourly nitrogen dioxide concentrations. WIT Trans. Ecol. Environ., 183: 39-48 (10 pages).

Chaloulakou, A.; Saisana, M.; Spyrellis, N., (2003). Comparative assessment of neural networks and regression models for forecasting summertime ozone in Athens. Sci. Total Environ., 313: 1-13 (13 pages).

Carnevale, C.; Finzi, G.; Pederzoli, A.; Turrini, E.; Volta, M. (2016). Lazy Learning based surrogate models for air quality planning. Environm. Model. software, 83: 47-57 (11 pages).

Chen, S.; Kan, G.; Li, J.; Liang, K.; Hong, Y. (2018). Investigating China's Urban Air Quality Using Big Data, Information Theory, and Machine Learning. Pol. J. Environ. Stud., 27(2): 1-14 (14 pages).

Chen, J.; Chen, H.; Wu, Z.; Hu, D.; Pan, J. Z. (2017). Forecasting smog-related health hazard based on social media and physical sensor. Inf. Syst., 64: 281–291 (11 pages).

Cohen, A. J.; Brauer, M.; Burnett, R.; Anderson, H. R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunkreef, B.; Dandona, L.; Dandona, R.; Feigen, V.; Freedman, G.; Hubbel, B.; Jobling, A.; Kan, H.; Knibbs, L.; Liu, Y.; Martin, R.; Forouzanfar, M. H. (2017). Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. The Lancet, 389: 1907-1918 (12 pages).

Daly, A.; Zannetti, P. (2007). Air pollution modeling--An overview. Ambient air pollut., 15-28 (14 pages).

Debry, E.; Mallet, V. (2014). Ensemble forecasting with machine learning algorithms for ozone, nitrogen dioxide and PM10 on the Prev'Air platform. Atmos. Environ., 91: 71-84 (14 pages).

Eldakhly, N. M.; Aboul-Ela, M.; Abdalla, A. (2018). A Novel Approach of Weighted Support Vector Machine with Applied Chance Theory for Forecasting Air Pollution Phenomenon in Egypt. Int. J. Comput. Intell. Appl., 17(1), 1850001 (29 pages).

Fathima, A.; Mangai, J.A.; Gulyani, B.B., (2014). An ensemble method for predicting biochemical oxygen demand in river water using data mining techniques. Int. J. River Basin Manage., 12: 357-366 (10 pages).

Feng, X.; Li, Q.; Zhu, Y.; Hou, J.; Jin, L.; Wang, J. (2015). Artificial neural networks forecasting of PM2. 5 pollution using air mass trajectory based geographic model and wavelet transformation. Atmos. Environ., 107, 118-128 (11 pages).

Gabralla, L.A.; Abraham, A., (2014). Prediction of oil prices using bagging and random subspace. Proceedings of the Fifth International Conference on Innovations in Bio-Inspired Computing and Applications IBICA, 2014, 343-354 (12 pages).

Gardner, M. W.; Dorling, S. R. (1998). Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences.. Atmos. Environ., 32: 2627-2636 (10 pages).

Gardner, M. W.; Dorling, S. R. (1999). Neural network modelling and prediction of hourly NOx and NO2 concentrations in urban air in London. Atmos. Environ., 33: 709-719 (11 pages).

Grange, S. K.; Carslaw, D. C.; Lewis, A. C.; Boleti, E.; Hueglin, C. (2018). Random forest meteorological normalisation models for Swiss PM 10 trend analysis. Atmos. Chem.Phys., 18(9), 6223-6239 (17 pages).

Hoek, G.; Beelen, R.; De Hoogh, K.; Vienneau, D.; Gulliver, J.; Fischer, P.; Briggs, D. (2008). A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmos. Environ., 42: 7561-7578 (18 pages).

Hoogh, K.; Héritier, H.; Stafoggia, M.; Künzli, N.; Kloog, I. (2018). Modeling daily PM2. 5 concentrations at high spatio-temporal resolution across Switzerland. Environ. Pollut., 233: 1147-1154 (8 pages).

Hu, K.; Rahman, A.; Bhrugubanda, H.; Sivaraman, V. (2017). HazeEst: Machine learning based metropolitan air pollution estimation from fixed and mobile sensors. IEEE Sensors J., 17: 3517-3525 (9 pages).

Huang, C. J.; Kuo, P. H. (2018). A deep cnn-lstm model for particulate matter (PM2.5) forecasting in smart cities. Sensors, 18: 2220 (22 pages).

Jiménez, P. A.;  Dudhia, J. (2013). On the ability of the WRF model to reproduce the surface wind direction over complex terrain. J. Appl. Meteorol. Climatol., 52: 1610-1617 (7 pages).

Just, A.; De Carli, M.; Shtein, A.; Dorman, M.; Lyapustin, A.; Kloog, I. (2018). Correcting Measurement Error in Satellite Aerosol Optical Depth with Machine Learning for Modeling PM2.5 in the Northeastern USA. Remote Sens., 10: 803 (17 pages).

Kinney, P.L. (2008). Climate change, air quality, and human health. American journal of preventive medicine, 35: 459-467 (8 pages).

Kleine Deters, J.; Zalakeviciute, R.; Gonzalez, M.; Rybarczyk, Y. (2017). Modeling PM2. 5 urban pollution using machine learning and selected meteorological parameters. J. Electr. Comp. Eng., 2017 (14 pages).

Lee, M.; Brauer, M.; Wong, P.; Tang, R.; Tsui, T. H.; Choi, C.; Chang, W.; Lai, P. C.; Tian, L.;Thach, T. Q.; Allen, R.; Barret, B. (2017). Land use regression modeling of air pollution in high density high rise cities: A case study in Hong Kong. Sci. Total Environ., 592: 306-315 (10 pages).

Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A., (2015). The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature, 525, 367 (14 pages).

Li, C.; Zhu, Z. (2018). Research and application of a novel hybrid air quality early-warning system: A case study in China. Science of the Total Environ., 626: 1421-1438 (18 pages).

Li, L.; Lurmann, F.; Habre, R.; Urman, R.; Rappaport, E.; Ritz, B.; Chen, J.; Gilliland, F. D.; Wu, J. (2017). Constrained mixed-effect models with ensemble learning for prediction of nitrogen oxides concentrations at high spatiotemporal resolution. Environ. Sci. Tech., 51: 9920-9929 (10 pages).

Limb, M. (2016). Half of wealthy and 98% of poorer cities breach air quality guidelines. BMJ: Br. Med. J., 353 (15 pages).

Liu, B.C.; Binaykia, A.; Chang, P.C.; Tiwari, M.; Tsao, C.C. (2017). Urban air quality forecasting based on multidimensional collaborative Support Vector Regression (SVR): A case study of Beijing-Tianjin-Shijiazhuang. PLoS ONE, 12, e0179763 (11 pages).

Liu, Y.; Cao, G.; Zhao, N.; Mulligan, K.; Ye, X. (2018). Improve ground-level PM2. 5 concentration mapping using a random forests-based geostatistical approach. Environ. Pollut., 235: 272-282 (11 pages).

Lu, W. Z.; Wang, W. J.; Wang, X. K.; Xu, Z. B.; Leung, A. Y., (2003). Using improved neural network model to analyze RSP, NO x and NO 2 levels in urban air in Mong Kok, Hong Kong. Environ. Monit. Assess., 87: 235-254 (20 pages).

Lutman, E. R.; Jones, S. R.; Hill, R. A.; McDonald, P.; Lambers, B. (2004). Comparison between the predictions of a Gaussian plume model and a Lagrangian particle dispersion model for annual average calculations of long-range dispersion of radionuclides. J. Environ. Radioact., 75: 339-355 (17 pages).

Marshall, J. D.; Nethery, E.; Brauer, M. (2008). Within-urban variability in ambient air pollution: comparison of estimation methods. Atmos. Environ., 42, 1359-1369 (11 pages).

Martı́nez-España, R.; Bueno-Crespo, A.; Timon-Perez, I. M.; Soto, J.; Muñoz, A.; Cecilia, J. M. (2018). Air-Pollution Prediction in Smart Cities through Machine Learning Methods: A Case of Study in Murcia, Spain. J. UCS, 24: 261-276 (16 pages).

Masih, A. (2018b). Modelling the atmospheric concentration of carbon monoxide by using ensemble learning algorithm. CEUR Workshop Procedings., 2298: 12 (7 pages).

Masih, A. (2018a). Thar coalfield: Sustainable development and an open sesame to the energy security of Pakistan. J. Physics: Conf. Ser., 989(1): 012004 (7 pages).

Masih, A. (2019). Application of Ensemble learning techniques to model the atmospheric concentration of SO2. Global J. Environ. Sci., 5(3): 309-318 (10 pages).

Mckeen, S.; Wilczak, J.; Grell, G.; Djalalova, I.; Peckham, S.; Hsie, E. Y.; Gong, W.; Bouchet, V.; Menard, S.; Moffet, R.; McHenry, J.; McQueen, J.; Tang, Y.; Carmichael, G. R.; Pogawski, M.; Chan, A.; Dye, T.; Frost, G.; Lee, P.; Mathur, R. (2005). Assessment of an ensemble of seven real-time ozone forecasts over eastern North America during the summer of 2004. J. Geophys. Res. Atmos., 110 (16 pages).

Met Office 2004. Numerical Atmospheric-Dispersion Modeling Environment (NAME) Model.

Morabito, F. C.; Versaci, M. (2003). Fuzzy neural identification and forecasting techniques to process experimental urban air pollution data. Neural Networks, 16: 493-506 (13 pages).

Nawahda, A., (2016). An assessment of adding value of traffic information and other attributes as part of its classifiers in a data mining tool set for predicting surface ozone levels. Process Saf. Environ. Prot., 99: 149-158 (13 pages).

Nhung, N. T.; Amini, H.; Schindler, C.; Joss, M. K.; Dien, T. M.; Probst-Hensch, N.; Perez, L.; Künzli, N. (2017). Short-term association between ambient air pollution and pneumonia in children: A systematic review and meta-analysis of time-series and case-crossover studies. Environ. Pollut., 230: 1000-1008 (9 pages).

Ni, X. Y.; Huang, H.; Du, W. P. (2017). Relevance analysis and short-term prediction of PM2. 5 concentrations in Beijing based on multi-source data. Atmos. Environ., 150: 146-161 (16 pages).

Nieto, P. J.; Antón, J. C.; Vilán, J. A.; Garcı́a-Gonzalo, E. (2015). Air quality modeling in the Oviedo urban area (NW Spain) by using multivariate adaptive regression splines. Environ. Sci. Pollut. Res., 22, 6642-6659 (18 pages).

Oprea, M.; Dragomir, E. L.; Popescu, M. A..; Mihalache, S.A., (2016). Particulate matter air pollutants forecasting using inductive learning approach. Rev. Chim, 67: 2075-2081 (7 pages).

Pannullo, F.; Lee, D.; Neal, L.; Dalvi, M.; Agnew, P.; O’Connor, F. M.;Mukhopadhyay, S.; Sahu, S.; Sarran, C. (2017). Quantifying the impact of current and future concentrations of air pollutants on respiratory disease risk in England. Environ. Health, 16: 29 (14 pages).

Peng, H.; Lima, A. R.; Teakles, A., Jin, J.; Cannon, A. J.;  Hsieh, W.W., (2017). Evaluating hourly air quality forecasting in Canada with nonlinear updatable machine learning methods. Air Qual. Atmos. Health, 10: 195-211 (17 pages).

Philibert, A.; Loyce, C.; Makowski, D. (2013). Prediction of N2O emission from local information with Random Forest. Environ. Pollut., 177: 156-163 (8 pages).

Prank, M.; Sofiev, M.; Tsyro, S.; Hendriks, C.; Semeena, V.; Francis, X. V.; Butler, T.; Van Der Gon, H. D.; Friedrich, R.; Hendricks, J.; Kong, X.; Lawrence, M.; Righi, M.; Samaras, Z.; Sausen, R.; Kukkonen, J.; Sokhi, R. (2005).  Evaluation of the performance of four chemical transport models in predicting the aerosol chemical composition in Europe in 2005. Atmos. Chem. Phys., 16, 6041–6070 (30 pages).

Rahimi, A., (2017). Short-term prediction of NO2and NOx concentrations using multilayer perceptron neural network: a case study of Tabriz, Iran. Ecol Processes., 6(4) (9 pages).

Riga, M.; Tzima, F.A.; Karatzas, K.; Mitkas, P.A., (2009). Development and evaluation of data mining models for air quality prediction in Athens, Greece. Inf. Technol. Environ. Eng.,  331-344 (14 pages).

Ritter, M.; Müller, M. D.; Tsai, M.Y.; & Parlow, E., (2013). Air pollution modeling over very complex terrain: An evaluation of WRF-Chem over Switzerland for two 1-year periods. Atmos. Res., 132: 209-222 (14 pages).

Russo, A.; Soares, A.O., (2014). Hybrid model for urban air pollution forecasting: A stochastic spatio-temporal approach. Math. Geosci., 46: 75-93 (19 pages).

Sadiq, A.; El Fazziki, A.; Ouarzazi, J.; Sadgal, M., (2016). Towards an agent based traffic regulation and recommendation system for the on-road air quality control. SpringerPlus., 5: 1604 (19 pages).

Salnikov, V.G.; Karatayev, M.A., (2011). Impact of air pollution on human health: Focusing on Rudnyi Altay industrial area. Am. J. Environ. Sci., 7(3): 286-294 (9 pages).

Sayegh, A. S.; Munir, S.; & Habeebullah, T. M. (2014). Comparing the performance of statistical models for predicting PM10 concentrations. Aerosol Air Qual. Res., 14: 653-665 (13 pages).

Shaban, K. B.; Kadri, A.; Rezk, E. (2016). Urban air pollution monitoring system with forecasting models. IEEE Sensors J., 16: 2598-2606 (9 pages).

Seigneur, C.; Moran, M. (2010) Chapter 8. Chemical-Transport Models, NASTRO Better Air Quality for North America (42 Pages).

Shimadera, H.; Kojima, T.; Kondo, A. (2016). Evaluation of Air Quality Model Performance for Simulating Long-Range Transport and Local Pollution of PM2.5 in Japan. Adv. Meteorol., 2016 (13 pages).

Singh, K. P.; Gupta, S.; Rai, P. (2013). Identifying pollution sources and predicting urban air quality using ensemble learning methods. Atmos. Environ., 80: 426-437 (12 pages).

Singh, K. P.; Gupta, S.; Kumar, A.; Shukla, S. P. (2012). Linear and nonlinear modeling approaches for urban air quality prediction. Sci. Total Environ., 426: 244-255 (12 pages).

Suárez Sánchez, A.; García Nieto, P. J.; Riesgo Fernández, P.; del Coz Díaz, J. J.; Iglesias-Rodríguez, F. J. (2011). Application of an SVM-based regression model to the air quality study at local scale in the Avilés urban area (Spain). Math. Comput. Model. 2011, 54, 1453–1466 (14 pages).

Tamas, W.; Notton, G.; Paoli, C.; Nivet, M.L.; Voyant, C., (2016). Hybridization of air quality forecasting models using machine learning and clustering: An original approach to detect pollutant peaks. Aerosol Air Qual. Res, 16: 405-416 (12 pages).

Tüfekci, P., (2014). Prediction of full load electrical power output of a base load operated combined cycle power plant using machine learning methods. Int. J. Electr. Power Energy Syst., 60: 126-140 (15 pages).

Van Loon, M.J.W.; Vautard, R.; Schaap, M.; Bergström, R.; Bessagnet, B.; Brandt, J.;  Builtjes, P.J.H.; Christensen, J.H.; Cuvelier, C.; Graff, A.; Jonson, J.E.; Krol, M.; Langner, J.; Roberts, P.; Rouil, L.; Stern, R.; Tarrasón, L.; Thunis, P.; Vignati, E.; White, L.; Wind, P., (2007). Evaluation of long-term ozone simulations from seven regional air quality models and their ensemble. Atmos. Environ., 41, 2083-2097 (15 pages).

Vong, C. M.; Ip, W. F.; Wong, P. K.; Yang, J. Y. (2012). Short-term prediction of air pollution in Macau using support vector machines. J. Control Sci. Eng., 2012 (11 pages).

Wang, D.; Lu, W.Z., (2006). Interval estimation of urban ozone level and selection of influential factors by employing automatic relevance determination model. Chemosphere, 62: 1600-1611 (12 pages).

Wang, P.; Liu, Y.; Qin, Z.; Zhang, G., (2015). A novel hybrid forecasting model for PM10 and SO2 daily concentrations. Sci. Total Environ., 505: 1202-1212 (11 pages).Windeatt, T., (2008). Ensemble MLP classifier design. Comput. Intell. Paradigms., 133-147 (15 pages).

WHO, (2014). WHO's ambient air pollution database Update 2014.

WHO, (2016) Air Pollution Levels Rising in Many of the World’s Poorest Cities.

Xu, J.; Schüssler, O.; Rodriguez, D. G.; Romahn, F.; Doicu, A. (2017). A novel ozone profile shape retrieval using full-physics inverse learning machine (FP-ILM). IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 10: 5442-5457 (16 pages).

Yang, W.; Deng, M.; Xu, F., Wang, H. (2018). Prediction of hourly PM2. 5 using a space-time support vector regression model. Atmos. Environ., 181: 12-19 (8 pages).

Yu, R.; Yang, Y.; Yang, L.; Han, G.; Move, O.A., (2016). Raq--a random forest approach for predicting air quality in urban sensing systems. Sensors, 16: 86 (18 pages).

Zafra, C.; Ángel, Y.; Torres, E. (2017). ARIMA analysis of the effect of land surface coverage on PM10 concentrations in a high-altitude megacity. Atmos. Pollut. Res., 8: 660-668 (9 pages).

Zhan, Y.; Luo, Y.; Deng, X.; Chen, H.; Grieneisen, M. L.; Shen, X.; Zhu, L.; Zhang, M. (2017). Spatiotemporal prediction of continuous daily PM2. 5 concentrations across China using a spatially explicit machine learning algorithm. Atmos. Environ., 155: 129-139 (11 pages).

Zhan, Y.; Luo, Y.; Deng, X.; Grieneisen, M. L.; Zhang, M.; Di, B. (2018). Spatiotemporal prediction of daily ambient ozone levels across China using random forest for human exposure assessment. Environ. Pollut., 233: 464-473 (10 pages).

Zhang, J.; Ding, W. (2017). Prediction of air pollutants concentration based on an extreme learning machine: the case of Hong Kong. Int. J. Environ. Res. Public health, 14: 114 (19 pages).

Zhang, Y.; Bocquet, M.; Mallet, V.; Seigneur, C.; Baklanov, A. (2012). Real-time air quality forecasting, part I: History, techniques, and current status. Atmos. Environ., 60: 632-655 (24 pages).

Zhao, X.; Zhang, R.; Wu, J. L.; Chang, P.C. (2018). A deep recurrent neural network for air quality classification. J. Inf. Hiding Multimed. Signal Process, 9, 346-354 (9 pages).

Zhu, W.; Wang, J.; Zhang, W.; Sun, D. (2012). Short-term effects of air pollution on lower respiratory diseases and forecasting by the group method of data handling. Atmos. Environ., 51: 29-38 (10 pages).



Masih, A., (2019). Machine learning algorithms in air quality modeling. Global J. Environ. Sci. Manage., 5(4): …, 

Letters to Editor

GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.