1 Department of Environmental Science, Faculty of Environment and Resource Development, Egerton University, Kenya

2 Dryland Research Training and Ecotourism Centre, Egerton University, Chemeron, Kenya

3 Department of Biological Sciences, Egerton University, Nakuru, Kenya


The use of constructed wetlands for purifying pre-treated wastewater is a cost effective technology that has been found to be more appropriate for many developing countries. The technology is also environmentally friendly with the wetlands being habitats for many water birds and other aquatic organisms. This study assessed nutrient removal efficiency of two floating macrophytes (Lemna minor and Azolla pinnata). The data generated was analyzed using both descriptive and inferential statistics. The significance level was maintained at 0.05. The results showed that the wastewater physicochemical parameters did not vary during the study period. The concentrations of nitrites and nitrates increased over the experimental period in all the treatments (Azolla pinnata, Lemna minor and control), and the increase between the sampling occasions was statistically significant for the two nutrients (Nitrates: F=24.78, P= 0.00; Nitrates: F=198.26, P= 0.00). To the contrary, in all the treatments the concentrations of ammonia, total phosphorous, soluble reactive phosphorous and total nitrogen, decreased over the experimental period. The decrease in concentration for these nutrients between the sampling occasions was statistically significant (ammonia: F=195.57, p= 0.00; total phosphorous: F= 56.50, p= 0.00; soluble reactive phosphorous: F= 37.11, p= 0.00; total phosphorous: F= 104.025, p= 0.00). Azolla pinnata proved to be better than Lemna minor in the uptake of the nutrients particularly for the soluble reactive phosphorous (F= 35.18, P= 0.044). We conclude that the two macrophytes are good for wastewater treatment. It is recommended introduction and/or multiplication of Azolla pinnata in the constructed wetlands meant for wastewater treatment especially within the tropics.

Graphical Abstract

Nutrient removal efficiency by floating macrophytes; Lemna minor and Azolla pinnata in a constructed wetland


  • The physicochemical parameters that were tested remained within the optimum range for growth of Lemna minor and Azolla pinnata and were stable throughout the period of the study;
  • Nutrients concentration decreased throughout the study period and the decrease was significantly different over the sampling occasions. The decrease was due to the uptake of the nutrients by the macrophytes for buildup of their biomass;
  • Azolla pinnata proved to be better than Lemna minor in the removal of nutrients from the wastewater. The uptake of the nutrients between the two floating macrophytes was signicantly different in soluble reactive phosphorous.  


Main Subjects

Alexia, M., (2017). The use of Lemna minor duckweed to remove nitrogen and phosphorous in wastewater effluent from a decentralized treatment system (DEWATS). California State Polytechnic University, Pomona Department of Civil Engineering.

Arora, A.; Saxena, S., (2005). Cultivation of Azolla microphylla biomass on secondary-treated Delhi municipal effluents. Biomass Bioenergy, 29(1): 60-64 (5 pages).

APHA, (2005). Standard methods for the examination of water and waste water. 21st edition, American Public Health Association, Washington D.C., USA.

Azarpira, H.; Behdarvand, P.; Dhumal, K.; Pondhe, G., (2013). Phytoremediation of municipal wastewater by using aquatic plants. Adv. Environ. Biol., 4649-4655 (7 pages).

Azarpira, H.; Behdarvand, P.; Dhumal, K.; Pondhe, G., (2014). Wastewater remediation by using Azolla and Lemna for selective removal of mineral nutrients. Int. J. Bio. Sci, 4: 66-73 (8 pages).

Bick, A.; Gillerman, L.; Manor, Y.; Oron, G., (2012). Economic assessment of an integrated membrane system for secondary effluent polishing for unrestricted reuse. Water, 4(1): 219-236 (18 pages).

Buchauer, K. (1998). A comparison of two simple titration procedures to determine volatile fatty acids in influents to waste-water and sludge treatment processes. Water SA-Pretoria-, 24: 49-56 (8 pages).  

Coleman, J.; Hench, K.; Garbutt, A.S., Bissonnette, G.; Skousenm J., (2001). Treatment of Domestic Wastewater by Three Plant Species in Constructed Wetlands. Water Air Soil Pollut., 128: 283-295 (13 pages).

Crispim, M.C.; Vieira, A.C.B.; Coelho, S.F.M.; Medeiros, A.M.A., (2009). Nutrient uptake efficiency by macrophyte and biofilm: practical strategies for small-scale fish farming. Acta limnologica brasiliensia, 21(4): 387-391 (5 pages).

Dalu, J.M.; Ndamba, J., (2003).  Duckweed based wastewater stabilization ponds for wastewater treatment (a low cost technology for small urban areas in Zimbabwe).  Physics Chem. Earth, Parts A/B/C, 28(20): 1147-1160 (13 pages).

Davies, T.H.; Cottingham, P.D., (1994). The use of constructed wetlands for treating industrial effluent (textile dyes). Water Sci. Technol., 29(4): 227-232 (6 pages).

Delzer, G.C.; McKenzie, S.W., (2003). Five-day biochemical oxygen demand: US geological survey techniques of water-resources investigations, Book 9, Chapter A7, Section 7.0.

Dhote, S.; Dixit, S., (2009). Water quality improvement through macrophytes—a review. Environ. Monit. Assess., 152(1-4): 149-153. (5 pages).

Dipu, S.; Anju, A.; Rita, S.; Thanga, V.S.G., (2013). Phytoremediation of radionuclide polluted industrial effluent by constructed wetland technology. Adv. Agric. Sci. Eng. Research, 3(4): 768-774 (7 pages).

Dipu, S.; Kumar, A.A.; Thanga, V.S.G., (2011). Phytoremediation of dairy effluent by constructed wetland technology. Environmentalist. 31(3): 263-278 (16 pages).

Dordio, A.V.; Carvalho, A.J.P., (2013). Organic xenobiotics removal in constructed wetlands, with emphasis on the importance of the support matrix. J. Hazard. Mater., 252: 272-292 (21 pages).

El-Shafai, S.A.; El-Gohary, F.A.; Nasr, F.A.; Van Der Steen, N.P.; Gijzen, H. J., (2007). Nutrient recovery from domestic wastewater using a UASB-duckweed ponds system. Bioresour. Technol., 98(4): 798-807 (10 pages).

Fabris, L., (2013). The influence of vegetation distribution on wetland efficiency.

Ferdoushi, Z.; Haque, F.; Khan, S.; Haque, M., (2008). The effects of two aquatic floating macrophytes (Lemna and Azolla) as biofilters of nitrogen and phosphate in fish ponds. Turk. J. Fish. Aquat. Sci., 8(2): 253-258 (6 pages).

Forni, C.; Chen, J.; Tancioni, L.; Caiola, M.G., (2001). Evaluation of the fern Azolla for growth, nitrogen and phosphorus removal from wastewater. Water Res., 35(6): 1592-1598 (7 pages).

Fraser, L.H.; Carty, S.M.; Steer, D., (2004). A test of four plant species to reduce total nitrogen and total phosphorus from soil leachate in subsurface wetland microcosms. Bioresour. Technol., 94(2): 185-192 (8 pages).

Ghosh, D.; Gopal, B., (2010). Effect of hydraulic retention time on the treatment of secondary effluent in a subsurface flow constructed wetland. Ecol. Eng., 36(8): 1044-1051 (8 pages).

Guo-feng, L.; Cheng-xin, F.; Shi-qun, H.; Jun, H.; Paerl, H.W., (2000). The Response of Macrophytes to Nutrients and Implications for the Control of Phytoplankton Blooms in East Taihu Lake, China. J. Pollut. Eff. Control. 2(2): 1-5 (5 pages).

Gustin, S.; Marinsek-Logar, R., (2011). Effect of pH, temperature and air flow rate on the continuous ammonia stripping of the anaerobic digestion effluent. Process saf. Environ. Protect. 89(1): 61-66 (6 pages).

Han, B.; Zhang, S.; Wang, P.; Wang, C., (2018). Effects of water flow on submerged macrophyte-biofilm systems in constructed wetlands. Sci. Rep., 8(1): 2650 (1 page).

Hernandez, M.E.; Mitsch, W.J., (2006). Influence of hydrologic pulses, flooding frequency, and vegetation on nitrous oxide emissions from created riparian marshes. J. Wetlands Ecol., 26(3): 862-877 (16 pages).

Iqbal, J.; Saleem, M.; Javed, A., (2017). Effect of electrical conductivity (Ec) on growth performance of duckweed at dumpsite leachate. Int. J. Sci., Environ. Technol., 6: 1989-1999 (11 pages).

Kalff, J., (2002). Limnology: inland water ecosystems (No. 504.45 KAL).

Kinidi, L.; Tan, I.A.W.; Wahab, A.; Binti, N.; Tamrin, K.F.B.; Hipolito, C.N.; Salleh, S.F., (2018). Recent development in ammonia stripping process for industrial wastewater treatment. Int. J. Chem. Eng., Article ID 3181087, (14 pages).

Lee, C.G.; Fletcher, T.D.; Sun, G., (2009). Nitrogen removal in constructed wetland systems.  Eng. Life Sci., 9(1): 11-22 (12 pages).

Leong, L.Y.; Kuo, J.; Tang, C.C., (2008). Disinfection of wastewater effluent: Comparison of alternative technologies. Water Environment Research Foundation.

Lepcha, O.T., (2016). Wastewater Treatment Using Aquatic Plants.

Levi, P.S.; Riis, T.; Alnøe, A.B.; Peipoch, M.; Maetzke, K.; Bruus, C.; Baattrup-Pedersen, A., (2015). Macrophyte complexity controls nutrient uptake in lowland streams. Ecosyst. 18(5): 914-931 (18 pages).

Limoli, A.; Langone, M.; Andreottola, G., (2016). Ammonia removal from raw manure digestate by means of a turbulent mixing stripping process. J. Environ. Manage., 176: 1-10 (10 pages).

Liu, Y. (Ed.)., (2007). Wastewater purification: aerobic granulation in sequencing batch reactors. CRC Press.

Manios, T.; Stentiford, E.I.; Millner, P., (2003). Removal of total suspended solids from wastewater in constructed horizontal flow subsurface wetlands. J. Environ. Sci. Health., Part A, 38(6): 1073-1085 (13 pages).

Merino-Solís, M.; Villegas, E.; de Anda, J.; López-López, A., (2015). The effect of the hydraulic retention time on the performance of an ecological wastewater treatment system: An anaerobic filter with a constructed wetland. Water, 7(3): 1149-1163.

Mitsch, W.J.; Day, J.W.; Gilliam, J.W.; Groffman, P.M.; Hey, D.L.; Randall, G.W.; Wang, N., (2001). Reducing Nitrogen Loading to the Gulf of Mexico from the Mississippi River Basin: Strategies to Counter a Persistent Ecological Problem: Ecotechnology—the use of natural ecosystems to solve environmental problems—should be a part of efforts to shrink the zone of hypoxia in the Gulf of Mexico. J. Biosci., 51(5): 373-388 (16 pages).

Mitsch, W.J.; Horne, A.J.; Nairn, R.W., (2000). Nitrogen and phosphorus retention in wetlands-ecological approaches to solving excess nutrient problems. Ecol. Eng., 14(1/2): 1-7 (7 pages).

O’Dell, J.W., (1993). Determination of nitrate–nitrite nitrogen by automated colorimetry. Methods for the determination of inorganic substances in environmental samples. US Environmental Protection Agency, Washington, DC.

Passeport, E.; Hunt, W.F.; Line, D.E.; Smith, R.A.; Brown, R.A., (2009). Field study of the ability of two grassed bioretention cells to reduce storm-water runoff pollution. J. Irrig. Drain. Eng., 135(4): 505-510 (6 pages).

Pedescoll, A.; Uggetti, E.; Llorens, E.; Granés, F.; García, D.; García, J., (2009). Practical method based on saturated hydraulic conductivity used to assess clogging in subsurface flow constructed wetlands. Ecol. Eng., 35(8): 1216-1224 (9 pages).

Pena, L.; Oliveira, M.; Fragoso, R.; Duarte, E., (2017). Potential of duckweed for swine wastewater nutrient removal and biomass valorisation through anaerobic co-digestion. J. Sustainable Dev.  Energy Water Environ. Syst., 5(2): 127-138 (12 pages).

Priya, A.; Avishek, K.; Pathak, G., (2012). Assessing the potentials of Lemna minor in the treatment of domestic wastewater at pilot scale. Environ. Monit. Assess., 184(7): 4301-4307 (7 pages).

Rizwana, M.; Darshan, M.; Nilesh, D., (2014). Phytoremediation of textile waste water using potential wetland plant: Eco sustainable approach. Int.  J. Interdiscip. Multi. Stud., 1(4): 130-138 (9 pages).

Saraiva, C.B.; Matos, A.T.; Matos, M.P.; Miranda, S.T., (2018). Influence of substrate and species arrangement of cultivated grasses on the efficiency of horizontal subsurface flow constructed wetlands. Engenharia Agrícola, 38(3): 417-425 (9 pages).

Sayadi, M. H.; Kargar, R.; Doosti, M.R.; Salehi, H., (2012). Hybrid constructed wetlands for wastewater treatment: a worldwide review. Proc. int. Acad. Ecol. Environ., Sci., 2(4): 204 (1 page).

Sehar, S.; Aamir, R.; Naz, I.; Ali, N.; Ahmed, S., (2013). Reduction of contaminants (physical, chemical, and microbial) in domestic wastewater through hybrid constructed wetland. ISRN microbial. Article ID 350260, (9 pages).

Sehar, S.; Naeem, S.; Perveen, I.; Ali, N.; Ahmed, S., (2015). A comparative study of macrophytes influence on wastewater treatment through subsurface flow hybrid constructed wetland. Ecol. Eng., 81: 62-69 (8 pages).

Sirage Ali, A.; Piet Lens, P.N.; Hans Van Bruggen, J.J.A., (2017) Purifying municipal wastewater using floating treatment wetlands: Free floating and emergent macrophytes. Adv. Recycling Waste Manage., 2: 138 (1 page).

Shah, M.; Hashmi, H.N.; Ali, A.; Ghumman, A.R., (2014). Performance assessment of aquatic macrophytes for treatment of municipal wastewater. J. of Environ. Health Sci. Eng., 12(1): 106 (1 page).

Shah, M.; Hashmi, H.N.; Ghumman, A.R.; Zeeshan, M., (2015). Performance assessment of aquatic macrophytes for treatment of municipal wastewater. J. South Afr. Inst. Civ. Eng., 57(3): 18-25 (8 pages).

Shelef, O.; Gross, A.; Rachmilevitch, S., (2013). Role of plants in a constructed wetland: current and new perspectives. Water Res., 5(2): 405-419 (15 pages).

Solano, M. L.; Soriano, P.; Ciria, M. P., (2004). Constructed wetlands as a sustainable solution for wastewater treatment in small villages. Biosyst. Eng., 87(1): 109-118 (10 pages).

Sood, A.; Uniyal, P.L.; Prasanna, R.; Ahluwalia, A.S., (2012). Phytoremediation potential of aquatic macrophyte, Azolla. Ambio., 41(2): 122-137 (16 pages).

Sooknah, R.D.; Wilkie, A.C., (2004). Nutrient removal by floating aquatic macrophytes cultured in anaerobically digested flushed dairy manure wastewater. Ecol. Eng., 22(1): 27-42 (16 pages).

Spinosa, L. (Ed.), (2011). Wastewater Sludge. IWA Publishing.

Srivastava, J.; Gupta, A.; Chandra, H., (2008). Managing water quality with aquatic macrophytes. Rev. Environ. Sci. Biotechnol., 7(3): 255-266 (12 pages).

Stottmeister, U.; Wießner, A.; Kuschk, P.; Kappelmeyer, U.; Kästner, M.; Bederski, O.; Moormann, H., (2003). Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnol. Adv., 22(1-2): 93-117 (25 pages).

Tang, Y.; Harpenslager, S.F.; van Kempen, M.M.; Verbaarschot, E.J.; Loeffen, L.M.; Roelofs, J.G.; Lamers, L.P., (2017). Aquatic macrophytes can be used for wastewater polishing but not for purification in constructed wetlands. Biogeosci., 14(4): 755-766 (12 pages).

Ugya, A.Y.; Imam, T.S., (2015). The efficiency of Eicchornia crassipes in the phytoremediation of waste water from Kaduna Refinery and petrochemical company. J. Environ. Sci. Toxicol., 43-47 (5 pages).

Vermaat, J.E.; Hanif, M.K., (1998). Performance of common duckweed species (Lemnaceae) and the water fern Azolla filiculoides on different types of waste water. Water Res., 32(9): 2569-2576 (8 pages).

Viehl,  K., (1932)  Ober den  Einfluss  der Wasserstoffionenkonzentration auf  die  Wirksamkeit undBiologie  des Belebtschlamms. Zentbl.  Bakt. Parasitkde Abt. II 86: 34-43 (10 pages).

Vymazal, J., (2010). Constructed wetlands for wastewater treatment. Water Res., 2(3): 530-549 (20 pages).

Wang, L.; Min, M.; Li, Y.; Chen, P.; Chen, Y.; Liu, Y.; Ruan, R., (2010). Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl. Biochem. Biotechnol., 162(4): 1174-1186 (13 pages).

Wu, H.; Zhang, J.; Ngo, H.H.; Guo, W.; Hu, Z.; Liang, S.; Liu, H., (2015). A review on the sustainability of constructed wetlands for wastewater treatment: design and operation. Bioresour. Technol., 175: 594-601 (8 pages).

Xu, J.; Shen, G., (2011). Growing duckweed in swine wastewater for nutrient recovery and biomass production. Bioresour. Technol., 102(2): 848-853 (6 pages).

Yin, Y.; Yu, C.; Yu, L.; Zhao, J.; Sun, C.; Ma, Y.; Zhou, G., (2015). The influence of light intensity and photoperiod on duckweed biomass and starch accumulation for bioethanol production. Bioresour. Technol., 187: 84-90 (7 pages).

Yuan, H.; Nie, J.; Zhu, N.; Miao, C.; Lu, N., (2013). Effect of temperature on the wastewater treatment of a novel anti-clogging soil infiltration system. Ecol. Eng., 57: 375-379 (5 pages).

Zhang, X.; Lin, A.J.; Zhao, F. J.; Xu, G. Z.; Duan, G.L.,  Zhu, Y.G., (2008). Arsenic accumulation by the aquatic fern Azolla: comparison of arsenate uptake, speciation and efflux by A. caroliniana and A. filiculoides. Environ. Pollut., 156(3): 1149-1155 (7 pages).

Zhang, Y., (2013). Design of a Constructed Wetland for Wastewater Treatment and Reuse in Mount pleasant, Utah.

Zhang, D.; Gersberg, R.M.; Keat, T.S., (2009). Constructed wetlands in China. Ecol. Eng., 35(10): 1367-1378 (12 pages).

Zhao, Z.; Shi, H.; Liu, Y.; Zhao, H.; Su, H.; Wang, M.; Zhao, Y., (2014). The influence of duckweed species diversity on biomass productivity and nutrient removal efficiency in swine wastewater. Bioresour. Technol., 167: 383-389 (7 pages).

Letters to Editor

GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.