1 Department of Geology, Sciences and Research Branch, Islamic Azad University, Tehran, Iran

2 Department of Range and Watershed Management, Faculty of Natural Resources, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran

3 Soil Conservation and Watershed Management Research Department, Kermanshah Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization, Kermanshah, Iran

4 Department of Geology, Faculty of Science, Lorestan, University, Khoram Abad, Iran


Grupi and Kashkan marl formations comprise a considerable part of Zagros region. These formations have a considerable erodibility and sedimentation potential because of their special geological and mineralogical characteristics. The objective of this study was to compare the erosion and sediment yield of Kashkan and Grupi formations in Merk watershed located in southeast Kermanshah, using the Modified Pacific Southwest Inter-Agency Committee model. This model is suitable for estimating erosion and sediment intensity within each geomorphologic unit comprising nine effective environmental factors as geological, pedological, climate, runoff, topography, land cover, land use, surface, and river erosion factors. The results indicated that Kashkan formation comprises siltstone, sandstone, shale, and conglomerate, and Grupi formation contains shale, clay, and limestone with a high erodibility potential. Field measurements and soil samples analyzed for effective factors releaved that sediment yield for Merek watershed was 18080.6 m3/ha/y. Furthermore, field measurement and soil samples analyzed for effective factors releaved that sediment yields for Kashkan and Gurpi were 7243.3 and 10837.5 m3/ha/y, respectively. The reasons for erosion intensity and sedimentation in the two mentioned formations are slopes, vegetation and land use in addition to the type of rocks in Kashkan and Gurpi formations which are predominantly marl and shale. 

Graphical Abstract


  • Kashkan and Gurpi formations were found the more vulnerable to erosion hazard due to their high shale and marl contents;
  • The respective dominant erosion feature in Kaskan and Gurpi are landslide and rill erosion;
  • Due to weak and shallow soil in Gurpi formation, runoff accelerates erosion.  


Main Subjects

Abdolahzadeh, A.; Ownegh, M.; Sadoddin, A.; Mostafazadeh, R., (2017). Comparison of two landslide-prone area determination methods in Ziarat Watershed, Golestan Province. J. Emergency Manage. 5(1): 5-13 (9 pages).

Abedian, S.; Salman Mahiny, A.; Karbakhsh Ravori, H., (2017). Estimating of erosion and sediment yield of Gorganrud basin using erosin potential method. Nat. Environ. Change 3(1): 19-32 (14 pages).

Altin, T., (2009). Pleistocene and Holocene fluvial development of the Ecemis Valley. Central Anatolia, Turkey, Q.  Int., 204(1-2): 76-83 (8 pages).

Asghari Saraskanroud, S; Zeinali, B; Mohammadnejad, V., (2017). Analysis physical and chemical properties of soil and morphometric impacts on gully erosion. Desert 22-2: 157-166 (9 pages).

Bagherzadeh, A.; Mansouri Daneshvar, M.A., (2013).  Evaluation of sediment yield and soil loss by the MPSIAC model using GIS at Golestan watershed, northeast of Iran. Arabian J. Geosci. 6, 3349-3362 (13 pages).

Bakker, M.M; Govers, G; Rounsevell, M.D., (2004). The crop productivity-erosion relationship: an analysis based on experimental work.  Catena, 57: 55–76 (22 pages).

Borchardt, G., (1989). Smectites, in: Bighman, J.M.; Dixon, J.B.; Milford, M.H.; Roth, C.B.; Weed, S.B. (Eds.), Minerals in Soil Environments. Soil Sci. Soc. Am., Madison, Washington, 728-767 (40 pages).

Brown,  A.G.; Carey, C.; Erkens, G.; Fuchs, M.; Hoffmann, T.;  Macaire, J.J.;  Moldenhauer, K.M.;  Walling, D.E., (2009). From sedimentary records to sediment budgets: multiple approaches to catchment sediment flux. Geomorphology, 108 (1-2): 35-47 (12 pages).

Booij, M.J., (2005). Impact of climate change on river flooding assessed with different spatial model resolutions. J. Hydrol. 303: 176-198 (20 pages).

Canga, M.R., (1999). Effects of subsequent simulated rainfall on runoff and erosion. Turk. J. Agric. For. 23:659-665 (6pages).

Carter, M.R.; Gregorich, E.G., (2008). Soil sampling and methods of analysis, CRC Press, Taylor and Francis Group (198pages).

Cerda, A., (2002). The effect of season and parent material on water erosion on highly eroded soil in eastern Spain. J. Arid. Environ. 52: 319-337 (19 pages).

Conforti, M.; Aucelli, P.C.; Robustelli, G.; Scarciglia, F., (2011). Geomorphology and GIS analysis for mapping gully erosion susceptibility in Turbolo stream Cat chment. Northern Calabria, Italy, Nat. Hazards., 56: 881- 898 (18 pages).

Daneshfaraz, R.; Rahmati, M.; Akbari Moghanjiq, P., (2017). Soil erosion and sediment mapping in Aidoghmoush watershed appling MPSIAC model and GIS and RS technologies. Environ. Resour. Res. 5: 35-49 (14 pages).

Ekwu, E.I.; Harrilal, A., (2010). Effect of soil type, peat, slope, compaction effort and their interactions on infiltration, runoff and raindrop erosion of some Trinidadian soils. Biosyst. Eng. 105(1): 112-118 (7 pages).

Feiznia, S.; Heshmati, M.; Ahmadi, H.; Ghodousi, J., (2007). Study marl gully erosion Aghajari formation in Qasr-e Shirin. J. Constr. Res. 74: 33-40 (7 pages).

Feng, X.; Wang, Y.; Chen. L.; Fu, B; Bai, G., (2010). Modeling  soil  erosion  and  its  response to  land-use  change  in  hilly  catchments  of  the  Chinese  Loess  Plateau.  Geomorphology, 118: 239-248 (10 pages).

Folk, R.L., (1974). Petrology of sedimentary racks: Hemphill Publishing Company Austin, Texas (182pages).

Garcia-Ruiz, J.M., (2010). The effects of land uses on soil erosion in Spain. A review, Catena 81: 1-11 (11 pages).

Gee, G.W.; Bauder, J.W., (1986) Particle size analysis. In: Klute, (Ed.) Methods of Soil Analysis. Part 1, 2nd ed. America Society of Agronomy, Madison- Wisconsin., 383-411 (29 pages).

Giménez, R.; Govers, G., (2008). Effects of freshly incorporated straw residue on rill erosion and hydraulics, Catena, 72: 214-223 (10pages).

Geissen, V.; Sanchez, R.; Kampichler, C., (2009). Effect of land-use change on some properties of tropical soils, an example from Southeast Mexico. Geoderma 151: 87-97 (11 pages).

Jia, X.; Wang, H.; Xiao, J., (2011). Geochemical elements characteristics and sources of the riverbed sediment in the Yellow River Desert Channel. Environ. Earth Sci., 64(8): 2159-2173 (15 pages).

Johnson, C.W.; Gebhardt, K.A., (1982). Predicting sediment yield from sagebrush rangelands. Proceeding of Workshop on Estimating Erosion and Sediment Yield on Rangelands. Tucson, Arizona, March 1981. US Department of Agriculture, Agric. Rev. Manuals, Western Series, 26: 145-156 (12 pages).

Karimi Bavandpoor, A.R.; Haj Hoseini, A., (1999). Geological map of Kermanshah with the scale of 1:100000, Geological Survey of Iran.

Karaş, E.; Oğuz, İ., (2017).  Evaluation of Soil Erosion and Sustainable Land Use Management in the Sarısu Basin. Turk. J. Agric. Food Sci. Technol., 5(8): 864-872 (8 pages).

Khalilian, S.; Shahvari, N., (2018). A SWAT Evaluation of the Effects of Climate Change on Renewable Water Resources in Salt Lake Sub-Basin, Iran. Agri. Eng., 1, 44–57 (14 pages).

Levy, G.J.; Levin, J.; Shainberg, I., (1994). Seal formation and interrill erosion, Soil Sci. Soc. Am. J., 58: 203-209 (7 pages).

Lewis, C.J.; McDonald, E.V.; Sancho, C.; Pena, J.L.; Rhodes, E.J., (2009). Climatic  implications  of  correlated  Upper  Pleistocene  glacial  and  fluvial  deposits  on  the  Cinca  and  Gallego  Rivers  (NE  Spain)  based  on  OSL  dating  and soil  stratigraphy,  Global Planet Change., 67: 141-152 (12 pages).

Liu, C.; Sui, J.; Zhao-Yin, W., (2008). Sediment load reduction in Chinese rivers, Int. J. Sediment Res. 23, Elsevier, 44-55 (12pages).

Mansouri Daneshvar, M.; Bagherzadeh, A., (2012). Evaluation of sediment yield in PSIAC and MPSIAC models by using GIS at Toroq Watershed, Northeast of Iran. Front. Earth Sci. 6(1): 83–94 (12 pages).

Maquaire, O; Malet, J.P; Remaitre, A; Locat, J; Koltz, S; Guillon, J., (2003). Instability conditions of Marly hillslopes: towards landsliding or gullying? The case of the Barcelonnette Basin, South East France, Bull. Eng. Geol. Environ. 70: 109-130 (22 pages).

Marani Barzani, M.; Khairulmaini, O.S., (2013). Desertification risk mapping of the Zayandeh Rood Basin in Iran. J. Earth Syst. Sci. 5(122): 1269–1282 (14 pages).

Masoumi, H; Jamali, AA; Khabazi, M., (2014).  Investigation of Role of Slope, Aspect and Geological Formations of Landslide Occurrence Using Statistical Methods and GIS in Some Watersheds in Chahar Mahal and Bakhtiari Province. J. Appl. Environ. Biol. Sci., 4(9)121-129 (9 pages).

Metternich, G.; Gonzales, S., (2005). FUERO: Foundations of a fuzzy exploratory model for soil erosion hazard prediction. Environ. Modell. Software, 20: 715- 728 (14 pages).

Miall, A.D., (1996). The geology of fluvial deposits, sedimentary facies, basin analysis and petroleum geology. Springer- Verlag, Berlin, New York (582 pages).

Niu, C.Y.; Musa, A.; Liu, Y., (2015). Analysis of soil moisture condition under different land uses in the arid region of Horqin sandy land, northern China. Solid Earth., 6: 1157–1167 (11 pages).

Owliaie, H.R.; Abtahi, A.; Heckr, R.J., (2006). Pedogenesis and clay mineralogical investigation of soils formed on gypsiferous and calcareous materials, on a transect, southwestern Iran. Geoderma, 134 (1-2): 62-81 (20 pages).

Ouyang, W.; Skidmore, A.K.; Hao, F.; Wang, T., (2010). Soil erosion dynamics response to landscape  pattern.  Sci. Total  Environ. 408: 1358-1366 (9 pages).

Pettijohn, F.J.; Potter, P.E.; Sieve, R., (1975). Sedimentary Rocks Harper and Row. New York (628 pages).

Pirasteh, S.; Kumar Tripathi, N.; Mahmoodzadeh, A.; Ziaee, H.R., (2008).  Integrated remote sensing and GIS based watershed erosion study in Zagros Fold Belt, Iran. Geoinformatics Int., 3 (4): 1-12 (12 pages).

Piccarreta, M.; Faulkner, H.; Bentivenga, M.; Capolongo, D., (2006). The influence of physico-chemical material properties on erosion processes in the badlands of Basilicata, Southern Italy. Geomorphology., 81: 235-251 (17pages).

Safamanesh, R.; Azmin-Sulaiman, W.N.; Ramli, F.M., (2006). Erosion risk assessment using an empirical model of pacific south west inter-agency committee method for Zargeh watershed, Iran. J. Spatial Hydrol., 1: 105-120 (16 pages).

Santis, F.D.; Giannossi, M.L.; Medici, L.; Summa, V.; Tateo, F., (2010). Impact of physico-chemical soil properties on erosion features in the Aliano area (Southern Italy). Catena, 81; 172-181 (10 pages).

Sereda, J.; Bogard, M.; Hudson, J.; Helps, D.; Dessouki, T., (2011). Climate warming and the onset of salinization: Rapid changes in the limnology of two northern Plains lakes. Limnologica 41: 1-9 (9 pages).

Shit, K.P.; Bhunia, G.S.; Maiti, R., (2016). An experimental investigation of rill erosion processes in lateritic upland region: A pilot study. Eur. J. Soil Sci. 2016, 5 (2) 121 – 131 (11 pages).

Sokouti, R.; Razagi, S., (2015). Erodibility and loss of marly drived soils. Eurasian J. Soil Sci. 2015, 4 (4): 279 – 286 (8 pages).

Sui, J.; He, Y.; Liu, C., (2009). Changes in sediment transport in Kuye River in the Loess Plateau in China. Int. J. Sediment Res. 24 (2): 201-213 (13 pages).

Sultan, K.; Shazili, N., (2011). Geochemical base lines of major and trace elements in the tropical sediments of the Terenggana River Basin, Malaysia, Int. J. Sediment Res. 25: 340-354 (14 pages).

Tajgardan, T.; Aubi, S.A.; Joybary, Sh., (2008). Estimation of erosion and sediment by using satellite data and GIS by using the mode (case study: Zyarat watershed), Sazandegi and Pajuhesh magazine 79: 38-45 (8 pages).

Toy, T.J.; Foster, G.R.; Renard, K.G., (2002). Soil erosion process prediction measurement and control, John wiley and sons, Inc, New York (338pages).

Vandekerckhove,  L.;  poesen,  J.;  Oostwaud Wijdenes,  D.;  Gyssels,  G.; Beuselinck,  L.; DeLuna,  T., (2000). Characterisitsc and controlling factors of bank gullies in two semi-arid Mediterranean environments. J. Geomorphol., 33: 37-58 (22 pages).

Vente, D.J.; Poesen, J., (2005). Predicting soil erosion and sediment yield at the basin scale: Scale issues and semi-quantitative models. Earth Sci. Rev., 71: 95-125 (31 pages).

Zarei, A.R.; Amiri, M.J., (2017). Evaluation of soil losses and sediment yield using modified PSIAC model. Iran Agric. Res. 36(1) 111-116 (6 pages).

Zhao, G.; Mu, X.; Wen, Z.; Wang, F.; Gao, P., (2013). Soil erosion, conservation, and Ecoenvironment changes in the Loess Plateau of China. Land Degrad. Dev.  24: 499-510 (12 pages).

Zhang, Q.; Lei, T.; Jun, Z., (2008). Estimation of the detachment rate in eroding rills in flume experiments using an REE tracing method. Geoderma, 147: 8-15 (8 pages).

Zia Abadi, L.; Ahmadi, H., (2011). Comparison of EPM and geomorphology methods for erosion and sediment yield assessment in Kasilian Watershed, Mazandaran Province, Iran. J. Earth Syst. Sci., 1269- 1282 (14 pages).



Rostami, F.; Feiznia, S.; Aleali, M.; Hashmati, M.; Yousefi yegane, B., (2019). Erodibility and sedimentation potential of marly formations at watershed scale. Global J. Environ. Sci. Manage., 5(3): …, …

Letters to Editor

GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.