Document Type: ORIGINAL RESEARCH PAPER

Authors

1 University Félix Houphouet Boigny de Cocody, UFR Sciences Médicales Abidjan Programme Doctoral Interuniversitaire de Santé Publique. Spécialités : Ecosystèmes, santé et développement durable, Bp V 14 Abidjan, Côte d'Ivoire

2 University Félix Houphouet Boigny de Cocody, UFR des Sciences Structure de la Matière et Technologie, Laboratoire de Physique de l’Atmosphère, 22 BP 582 Abidjan 22, Côte d’Ivoire

3 Universty Peleforo Gon Coulibaly, BP 1328 Korhogo, Côte d’Ivoire

4 Department of Environmental Occupational and Environmental Medicine, Fogarty International Center Southern African Program in Environmental and Occupational Health University of Michigan, Michigan, USA

Abstract

Indoor air pollution associated with cooking and heating biomass fuel burning is estimated to be responsible for 7 million deaths in 2016 and most of these deaths occur in low and middle income countries. In Côte d'Ivoire, 73% of the population is reported using biomass (charcoal or wood) for cooking. The active device 3M EVM-7 was used to measure PM2.5 daily average concentrations inside and outside households in areas close (Andokoi) and far (Lubafrique) to an industrial zone in two popular neighborhoods of Yopougon, the largest and most populated municipality of the city of Abidjan (Côte d’Ivoire). PM2.5 daily average concentrations indoors and outdoors are respectively 121±12 µg/m3 and 117±8 µg/m3 in Andokoi and 32±3 µg/m3 and 41±4 µg/m3 in Lubafrique well above the World Health Organization guideline value (25 µg/m3) for air quality. Using multivariable models, the results were the number of windows in bedrooms and kitchens located outdoor were negatively correlated with the concentration of indoor PM2.5. The outdoor concentrations of PM2.5, were higher according to the cooking fuel type. 

Graphical Abstract

Highlights

  • Concentrations of PM2.5 on the two neighborhoods in Yopougon (Abidjan, Cote d’Ivoire) were greater than WHO Air quality guidelines for particulate matter (PM2.5 lower than 25 µg/m3 24-hour mean)
  • Local sources (biomass burning, traffic, low income quality of housing) contributed to increase the level of indoor air pollutants
  • Children under five-year-old in Yopougon municipality are exposed to PM2.5 daily average concentration greater than 25 µg/m3.

Keywords

Main Subjects

Adeloye, D.; Chan, K.Y.; Rudan, I.; Campbell, H., (2013). An estimate of asthma prevalence in Africa: a systematic analysis. Croat. Med. J., 54(6): 519–531 (13 pages).

Al-Dabbous, A.N.; Khan, A.R.; Al-Tamimi, S.A.; Shalash, M.; Bajoga, A.D.; Malek, M.J., (2018). Oxides of carbon, particulate matters and volatile organic compounds impact on indoor air quality during waterpipe smoking. Int. J. Environ. Sci. Technol., (6 pages).

Apte, K.; Salvi, S., (2016). Household air pollution and its effects on health. F1000 Research, 5: 2593 (13 pages).

Balakrishnan, K.; Sambandam, S.; Ghosh, S.; Mukhopadhyay, K.; Vaswani, M.; Arora, N.K.; Jack, D.; Pillariseti, A.; Bates, M.N.; Smith, K.R., (2015). Household air pollution exposures of pregnant women receiving advanced combustion cookstoves in India: implications for intervention. Annu. Global Health, 81(3): 375-385 (11 pages).

Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Forouzanfar, M.H., (2017). Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the global burden of diseases study 2015. Lancet (London, England), 389 (10082): 1907-1918 (12 pages).

Devakumar, D.; Semple, S.; Osrin, D.; Yadav, S.K.; Kurmi, O.P.; Saville, N.M.; Shrestha, B.; Manandhar, D.S.; Costello, A.; Ayres, J.G., (2014). Biomass fuel use and the exposure of children to particulate air pollution in southern Nepal. Environ. Int., 66(79-87 (8 pages).

Dionisio, K.L.; Rooney, M.S.; Arku, R.E.; Friedman, A.B.; Hughes, A.F.; Vallarino, J.; Agyei-Mensah, S.; Spengler, J.D.; Ezzati, M., (2010). Within-neighborhood patterns and sources of particle pollution: mobile monitoring and geographic information system analysis in four communities in Accra, Ghana. Environ. Health Perspect., 118(5): 607-613 (7 pages).

Djossou, J.; Léon, J.-F.; Akpo, A.B.; Liousse, C.; Yoboué, V.; Bedou, M.; Bodjrenou, M.; Chiron, C.; Galy-Lacaux, C.; Gardrat, E.; Abbey, M.; Keita, S.; Bahino, J.; Touré, N.; apos; Datchoh, E.; Ossohou, M.; Awanou, C.N., (2018). Mass concentration, optical depth and carbon composition of particulate matter in the major southern west African cities of Cotonou (Benin) and Abidjan (Côte d'Ivoire). Atmos. Chem. Phys., 18(9): 6275-6291 (17 pages).

Doumbia, M.; Toure, N. D.; Silue, S.; Yoboue, V.; Diedhiou, A.; Hauhouot, C., (2018). Emissions from the road traffic of west Africa’s cities: assessment of vehicle fleet and fuel consumption. Energies, 11(9) : (16 pages).

Du, W.; Li, X.; Chen, Y.; Shen, G., (2018). Household air pollution and personal exposure to air pollutants in

rural China  – a review. Environ. Pollut., 237(625-638 (14 pages).

Ekren, O.; Karadeniz, Z. H.; Atmaca, I.; Ugranli-Cicek, T.; Sofuoglu, S. C.; Toksoy, M., (2017). Assessment and improvement of indoor environmental quality in a primary school. Sci. Technol. Built Environ., 23(2): 391–402 (13 pages).

Gnaze, Z.A.; Anon, J.C.; Kouassi, B.A., (2017). Prévalence et prise en charge des pathologies respiratoires basses dans les formations sanitaires publiques de la commune de Yopougon. Revue des Maladies Respiratoires, 34: 98-109 (12 pages).

Gordon, S.B.P.; Bruce, N.G.P.; Grigg, J.P.; Hibberd, P.L.P.; Kurmi, O.P.P.; Lam, K.-b.H.P.; Mortimer, K.P.; Asante, K.P.P.; Balakrishnan, K.P.; Balmes, J.P.; Bar-Zeev, N.P.; Bates, M.N.P.; Breysse, P.N.P.; Buist, S.M.D.; Chen, Z.P.; Havens, D.D.O.; Jack, D.P.; Jindal, S.M.D.; Kan, H.P.; Mehta, S.P.; Moschovis, P.M.D.; Naeher, L.P.; Patel, A.P.; Perez-Padilla, R.M.D.; Pope, D.P.; Rylance, J.M.D.; Semple, S.P.; Martin, W.J.P., (2014). Respiratory risks from household air pollution in low and middle income countries. Lancet Respir. Med., 2(10): 823-860 (38 pages).

Gurley, E.S.; Homaira, N.; Salje, H.; Ram, P.K.; Haque, R.; Petri, W.; Bresee, J.; Moss, W.J.; Breysse, P.; Luby, S.P.; Azziz-Baumgartner, E., (2013). Indoor exposure to particulate matter and the incidence of acute lower respiratory infections among children: a birth cohort study in urban Bangladesh. Indoor Air, 23(5): 379-386 (7 pages).

IEA, (2010). World Energy Outlook, IEA publications, Soregraph, France.

INS, (2015). Enquete sur le niveau de vie des menages en Côte d’Ivoire ; ENV 2015.

Jafta, N.; Barregard, L.; Jeena, P.M.; Naidoo, R.N., (2017). Indoor air quality of low and middle income urban households in Durban, South Africa. Environ. Res., 156: 47-56 (10 pages).

Junaid, M.; Syed, J.H.; Abbasi, N.A.; Hashmi, M.Z.; Malik, R.N.; Pei, D.S, (2018). Status of indoor air pollution (IAP) through particulate matter (PM) emissions and associated health concerns in South Asia. Chemosphere, 191: 651-663 (13 pages).

Kim, K.-H.; Jahan, S.A.; Kabir, E., (2011). A review of diseases associated with household air pollution due to the use of biomass fuels. J. Hazard. Mater., 192(2): 425-431 (7 pages).

Kolluru, S.S.R.; Patra, A.K.; Sahu, S.P., (2018). A comparison of personal exposure to air pollutants in different travel modes on national highways in India. Sci. Total Environ., 619-620(155-164 (10 pages).

Kumar, R.; Nagar, J.K.; Goel, N.; Kumar, P.; Kushwah, A.S.; Gaur, S.N., (2015). Indoor air pollution and asthma in children at Delhi, India. Pneumonol. Alergol. Pol., 83(4): 275-282 (8 pages).

Lambe, F.; Jürisoo M.; Wanjiru, H.; Senyagwa, J., 2015.  Bringing clean, safe, affordable cooking energy to households across Africa: an agenda for action. New Clim. Econ., 1-32 (32 pages).

Lelieveld, J. ; Haines, A.; Pozzer, A., (2018). Age-dependent health risk from ambient air pollution: a modelling and data analysis of childhood mortality in middle-income and low-income countries. Lancet Planet. Health, 2(7): 292-300 (9 pages).

Li, Q.; Jiang, J.; Wang, S.; Rumchev, K.; Mead-Hunter, R.; Morawska, L.; Hao, J., (2017). Impacts of household coal and biomass combustion on indoor and ambient air quality in China: Current status and implication. Sci. Total Environ., 576(347-361 (15 pages).

Nandasena, S.; Wickremasinghe, A.R.; Sathiakumar, N., (2013). Indoor air pollution and respiratory health of children in the developing world. World J. Clin. Pediatr., 2(2): 6-15 (10 pages).

Matz, C.; Stieb, D.; Brion, O., (2015). Urban-rural differences in daily time-activity patterns, occupational activity and housing characteristics. Environ. Health, 14: 88 (11 pages).

Ni, L.; Chuang, C.C.; Zuo, L., (2015). Fine particulate matter in acute exacerbation of COPD. Front. Physiol., 6(294), (10 pages).

Noubiap, J.J.N.; Essouma, M.; Bigna, J.J.R., (2015). Targeting household air pollution for curbing the cardiovascular disease burden: a health priority in Sub‐Saharan Africa. J. Clin. Hypertens., 17(10): 825-829 (5 pages).

Oliveira, M.; Klara S.; Cristina D.M.; Maria C.P; Simone M., 2019. Children environmental exposure to particulate matter and polycyclic aromatic hydrocarbons and biomonitoring in school environments: a review on indoor and outdoor exposure levels, major sources and health impacts. Environ. Int., 124: 180-204 (25 pages).

Oyinloye, M. A., (2015). Environmental pollution and health risks of residents living near Ewekoro cement factory, Ewekoro, Nigeria. World Academy of Science, Engineering and Technology Int. J. Archit. Environ. Eng., 9(2): 108–114 (8 pages).

Porebski, G.; Wozniak, M.; Czarnobilska, E., (2014). Residential proximity to major roadways is associated with increased prevalence of allergic respiratory symptoms in children. Ann. Agric. Environ. Med., 21(4): 760-766 (7 pages).

Rokoff, L.B.M.S.; Koutrakis, P.P.; Garshick, E.M.D.M.O.H.; Karagas, M.R.P.; Oken, E.M.D.M.P.H.; Gold, D.R.M.D.M.P.H.; Fleisch, A.F.M.D.M.P.H., (2017). Wood stove pollution in the developed world: a case to raise awareness among pediatricians. Curr. Probl. Pediatr. Adolesc. Health Care, 47(6): 123-141 (19 pages).

Sharma, D.; Jain, S., (2019). Impact of intervention of biomass cookstove technologies and kitchen characteristics on indoor air quality and human exposure in rural settings of India. Environ. Int., 123(240-255 (16 pages).

Shen, G., (2015). Quantification of emission reduction potentials of primary air pollutants from residential solid fuel combustion by adopting cleaner fuels in China. J. Environ. Sci. (China), 37: 1–7 (7 pages).

Vanker, A.; Barnett, W.; Nduru, P.M.; Gie, R.P.; Sly, P.D.; Zar, H.J., (2015). Home environment and indoor air

pollution exposure in an African birth cohort study. Sci. Total Environ., 536: 362-367 (6 pages).

WHO, (2018). Air pollution and child health: prescribing clean air.

Wu, W.; Jin, Y.; Carlsten, C., (2018). Clinical reviews in allergy and immunology Inflammatory health effects of indoor and outdoor particulate matter. J Allergy Clin. Immunol., 141: 833-844 (12 pages).

Zidago A.; Wang, W.Z., (2016). Charcoal and fuelwood consumption and its impacts on environment in Cote d’Ivoire (case study of yopougon area). Environ. Nat. Resour. Res., 6( 4): 26-35 (10 pages).

 

HOW TO CITE THIS ARTICLE

Kouao, A.K.R.; N'datchoh, E.T.; Yoboue, V.; Silue, S.; Attoh, H.; Coulibaly, M.; Robins, T., (2019). Exposure to indoor and outdoor air pollution among children under five years old in urban area. Global J. Environ. Sci. Manage., 5(2): 191-202.


Letters to Editor


GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.

CAPTCHA Image