Document Type: REVIEW PAPER


1 Instituto de Investigación e Innovación en Energías Renovables, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez, Chiapas, México

2 Departamento de Ingeniería Química y Bioquímica, Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez, Chiapas, México

3 Conacyt, Departamento de Química, Universidad de Guanajuato, Guanajuato, Guanajuato, México


The expanded granular sludge bed bioreactor appears today as a cheap, robust and more popular technology because it operates using a fluidized bed, which allows increasing in organic load and in cell retention times, generating higher treatment efficiencies (up to 95 %) and renewable energy (i.e., biogas, biomethane, and biohydrogen). Nevertheless, the efficiency of this bioreactor mainly depends on the operating conditions. Thus, the content presented in this review paper focuses on the analysis of the operating conditions and performance of expanded granular sludge bed bioreactor for treating different types of industrial, agro-industrial and domestic wastewaters (e.g., agro-food, beverage, alcohol distillery, tannery, slaughterhouse, chemical, pharmaceutical, municipal sewage, among others). Because of this reason, this study aimed to analyze the operating conditions and type of substrate, which has been used in these bioreactors to improve future research to wastewater treatment and renewable energy production. According to the review, it is concluded that the EGSB bioreactor is a novel sustainable alternative to treat different types of wastewaters and consequently change the paradigm of wastewater management from "treatment and disposal" to "beneficial use" as well as "profitable effort".

Graphical Abstract


  • Expanded granular sludge bed bioreactor has an effective, low-cost technology to treat different type to industrial, agro-industrial and domestic wastewaters
  • Expanded granular sludge bed bioreactor could be a sustainable alternative to simultaneously solve the environmental problems and to produce bioenergy.
  • Expanded granular sludge bed bioreactor can generate effluent with quality similar to aerobic bioreactors to more low-cost.


Main Subjects

Abdelgadir, A.; Chen, X.; Liu, J.; Xie, X.; Zhang, J.; Zhang, K.; Wang, H.; Liu, N., (2014). Characteristics, process parameters, and inner components of anaerobic bioreactors. BioMed. Res. Int., ID 841573, (10 pages).

Ahn, J.H.; Forster, C.F., (2002). Comparison of mesophilic and thermophilic anaerobic upflow filters treating paper-pulp-liquors. Process Biochem., 38(2): 256–261 (6 pages).

Alphenaar, A., (1994). Anaerobic granular sludge: characterization, and factors affecting its functioning. PhD. Thesis. Department of Environmental Technology, Agricultural University, Wageningen, The Netherlands.

Angelidaki, I.; Ahring, B.K., (1993). Thermophilic digestion of livestock waste: the effect of ammonia. Appl. Microbiol. Biotechnol., 38: 560–564 (5 pages).

Angelidaki, I.; Ellegaard, L.; Ahring, B.K., (1993). A mathematical model for dynamic simulation of anaerobic digestion of complex substrates: focusing on ammonia inhibition. Biotechnol. Bioeng., 42: 159–166 (8 pages).

Bai, C.; Zhang, D.; He, Q.; Lu, P.; Ai, H., (2013). An EGSB-SBR based process for coupling methanogenesis and shortcut nitrogen removal. Water Sci. Technol., 68(7): 1633-1640 (8 pages).

Bhattacharyya, D.; Singh, K.S. (2010). Understanding the mixing pattern in an anaerobic expanded granular sludge bed reactor: effect of liquid recirculation. J. Environ. Eng., 136: 576-584 (9 pages).

Boaventura, R.A.; Rodrigues, A.E., (1988). Consecutive reactions in fluidized bed biological reactors: modelling and experimental study of wastewater denitrification. Chem. Eng. Sci., 43: 2715–2728 (14 pages).

Borja, R.; Banks, J.C.; Wang, Z., (1995). Kinetic evaluation of an anaerobic fluidized-bed reactor treating slaughterhouse wastewater. Biores. Tech., 52:163-167 (5 pages).

Buffiere, P.; Steyer, J.P.; Fonade, C.; Moletta, R., (1998). Modeling and experiments on the influence of biofilm size and mass transfer in a fluidized bed reactor for anaerobic digestion. Water Res., 32: 657–668 (12 pages).

Chan, Y.J.; Chong, M.F.; Law, C.L.; Hassell, D.G., (2009). A review on anaerobic–aerobic treatment of industrial and municipal wastewater. Chem. Eng. J., 155:1–18 (18 pages).

Chen, C.; Ren, N.; Wang, A.; Yu, Z.; Lee, D.J., (2008b). Simultaneous biological removal of sulfur, nitrogen and carbon using EGSB reactor. Appl. Microbiol. Biotechnol., 78: 1057–1063 (7 pages).

 Chen, T.; Zheng, P.; Shen, L.; Ding, S.; Mahmood, Q., (2011). Kinetic characteristics and microbial community of Anammox-EGSB reactor. J. Hazard. Mater. 190(1-3): 28-35 (8 pages).

Chen, Y.; Cheng, J.J.; Creamer, K.S., (2008a). Inhibition of anaerobic digestion process: a review. Bioresour. Technol., 99 (10): 4044–4064 (21 pages).

Chu, L.B.; Yang, F.L.; Zhang, X.W., (2005). Anaerobic treatment of domestic wastewater in a membrane-coupled expended granular sludge bed (EGSB) reactor under moderate to low temperature. Process Biochem., 40: 1063–1070 (8 pages).

Cisneros-Pérez, C.; Carrillo-Reyes, J.; Celis, L.B.; Alatriste-Mondragón, F.; Etchebehere, C.; Razo-Flores, E., (2015). Inoculum pretreatment promotes differences in hydrogen production performance in EGSB reactors. Int. J. Hydrogen Energy., 40(19): 6329-6339 (11 pages).

Collins, G.; Foy, C.; McHugh, S.; Mahony, Y.; O’Flaherty, V., (2005). Anaerobic biological treatment of phenolic wastewater at 15 ~ 18oC. Water Res. 39(8): 1614-1620 (7 pages).

Colllins, G.; Woods, A.; McHugh, S.; Carton, M.W.; O’Flaherty, V., (2003). Microbial community structure and methanogenic activity during start-up psychrophilic anaerobic digesters treating synthetic industrial wastewaters. FEMS Microbiol. Ecol., 46(2): 159-170 (12 pages).

Colussi, I.; Cortesi, A.; Della-Vedova, L.: Gallo, V.; Cano-Robles, F.K., (2009). Start-up procedures and analysis of heavy metals inhibition on methanogenic activity in EGSB reactor. Bioresour. Technol.,  100: 6290–6294 (5 pages).

Connaughton, S.; Collins, G.; O’Flaherty, V., (2006). Psychrophilic and mesophilic anaerobic digestion of brewery effluent: a comparative study. Water Res., 40(13): 2503-2510 (8 pages).

Cruz-Salomón, A.; Ríos-Valdovinos, E.; Pola-Albores, F.; Meza-Gordillo, R.; Lagunas-Rivera, S.; Ruíz-Valdiviezo, V.M., (2017a). Anaerobic treatment of agro-industrial wastewater for COD removal in expanded granular sludge bed bioreactor. Biofuel Res., J. 16: 715-720 (6 pages).

Cruz-Salomón, A.; Meza-Gordillo, R.; Rosales-Quintero, A.; Ventura-Canseco, C.; Lagunas-Rivera, S.; Carrasco-Cervantes, J., (2017b). Biogas production from a native beverage vinasse using a modified UASB bioreactor. Fuel., 198: 170-174 (5 pages).

Cruz-Salomón, A., (2018). Design and evaluation of EGSB bioreactors for the treatment of agro-industrial wastewaters of the state of Chiapas. Doctoral Thesis. UNICACH. Chiapas, Mexico.

Cruz-Salomón, A.; Ríos-Valdovinos, E.; Pola-Albores, F.; Lagunas-Rivera, S.; Meza-Gordillo, R.; Ruíz-Valdiviezo, V.M., (2018). Evaluation of hydraulic retention time on treatment of coffee processing wastewater (CPWW) in EGSB bioreactor. Sustainability., 10(1): 83 (11 pages).

de la Rubia, M.A., Perez, M., Romero, L.I.; Sales, D., (2006). Effect of solids retention time (SRT) on pilot scale anaerobic thermophilic sludge digestion. Process biochem., 41(1): 79-86 (8 pages).

de Man, A.W. A.; Grin, P.C.; Roersma, R.E.; GroUe, K. C. F.; Lettinga, G., (1986). Anaerobic treatment of municipal wastewater at low temperatures. Anaerobic treatment. A grown-up technology. Conference papers (Aquatech '86), Amsterdam., 451-466 (17 pages).

Di Felice, R., (1995). Hydrodynamics of liquid fluidisation. Chem. Eng. Sci. 50: 1213–1245 (33 pages).

Donoso-Bravo, A.; Retamal, C.; Carballa, M.; Ruiz-Filippi, G.; Chamy, R., (2009). Influence of temperature on the hydrolysis, acidogenesis and methanogenesis in mesophilic anaerobic digestion: parameter identification and modeling application. Water Sci. Technol., 60(1): 9-17 (9 pages).

Ekama, G.A.; Wentzel, M.C., (2008). Organic material removal. Biological wastewater treatment: Princ, Modell Des. 53 (29 pages).

Enright, A.M.; McHugh, S.; Collins, G.; O’Flaherty, V., (2005). Low-temperature anaerobic biological treatment of solvent-containing pharmaceutical wastewater. Water Res., 39(19): 4587-4596 (10 pages).

Fang,C.; O-Thong, S.; Boe K.; Angelidaki, I., (2011a). Comparison of UASB and EGSB reactors performance, for treatment of raw and deoiled palm oil mill effluent (POME). J. Hazard. Mater., 189(1-2): 229-234 (6 pages).

Fang, C.; Boe, K.; Angelidaki, I., (2011b). Biogas production from potato-juice, a by-product from potato-starch processing, in upflow anaerobic sludge blanket (UASB) and expanded granular sludge bed (EGSB) reactors. Bioresour. Technol., 102: 5734–5741 (8 pages).

 Frankin, R.; Koevoets, W.A.A.; van Gils, W.M.A.; van der Pas, A., (1992). Application of the biobed upflow fluidized- bed process for anaerobic wastewater treatment. Water Sci. Technol., 25: 373–382 (10 pages).

Frijters, C.T.M.J.; Vos, R.H.; Scheffer, G.; Mulder, R., (2006). Decolorizing and detoxifying textile wastewater, containing both soluble and insoluble dyes, in a full scale combined anaerobic/aerobic system. Water Res., 40(6): 1249–1257 (9 pages).

Fuentes, M. A.; Scenna, N.J.; Aguirre, P.A., (2011). A coupling model for EGSB bioreactors: hydrodynamics and anaerobic digestion processes. Chem. Eng. Process.50 (3): 316-324 (9 pages).

Gao, D.W.; Huang, X.L; Tao, Y.; Cong, Y.; Wang, X.L., (2015)., Sewage treatment by an UAFB–EGSB biosystem with energy recovery and autotrophic nitrogen removal under different temperatures. Bioresour. Technol., 181: 26–31 (6 pages).

GonCalves, R.F.; Cha-Lier, A.C.; Sammut, F., (1994). Primary fermentation of soluble and particulate organic matter for wastewater treatment. Water Sci. Technol., (30) 6: 53-62 (10 pages).

Gou, C.; Yang, Z.; Huang, J.; Wang, H.; Xu, H.; Wang, L., (2014). Effects of temperature and organic loading rate on the performance and microbial community of anaerobic co-digestion of waste activated sludge and food waste. Chemosphere. 105: 146–151 (6 pages).

Guo, G., (2012). The effects of local hydrodynamics on mass transfer in disordered porous media. Louisiana State University, Doctoral Dissertations.

Haandel, A.V.; Lubbe, J.V.D., (2007). Handbook biological waste water treatment: design and optimization of activated sludge systems, Anaerobic–aerobic Wastewater Treatment.

Halalsheh, M.; Koppes, J.; Den Elzen, J.; Zeeman, G.; Fayyad, M.; Lettinga, G., (2005). Effect of SRT and temperature on biological conversions and the related scum-forming potential. Water Res., 39(12): 2475–2482 (8 pages).

Hermanovicz, S.W.; Ganczarczyk, J.J., (1983). Some fluidization characteristics of biological beds. Biotechnol. Bioeng., 25: 1321–1330 (10 pages).

Hulshoff Pol, L.W.; de Castro-Lopes, S.I.; Lettinga, G.; Lens, P.N.L., (2004). Anaerobic sludge granulation. Water Res., 38(6): 1376–1389 (14 pages).

Iñiguez-Covarrubias, G.; Camacho-López, A., (2011). Evaluation of an upflow anaerobic sludge blanket reactor (UASB) with changes in the upflow velocity, Ing. Inv. y Tecnol., 12 (1): 199-208 (10 pages).

Kato, M. T.; Florencio, L; Arantes, R.F.M., (2003). Post-treatment of UASB effluent in an expanded granular sludge bed reactor type using flocculent sludge. Water Sci. Technol., 48(6): 279-284 (6 pages).

Kaviyarasan, K., (2014). Application of UASB Reactor in Industrial wastewater treatment – A Review. Int. J. Sci. Eng. Res., 5: 584-589 (6 pages).

Kettunen, R.H.; Rintala, J.A., (1997). The effect of low temperature (5–29 ºC) and adaptation on the methanogenic activity of biomass. Appl. Microbiol. Biotechnol., 48(4): 570–576 (7 pages).

Kim, M.; Ahn, Y.H.; Speece, R.E., (2002). Comparative process stability and efficiency of anaerobic digestion; mesophilic vs. thermophilic. Water Res., 36: 4369–4385 (17 pages).

Kleerebezem, R.; Macarie H., (2003). Treating industrial wastewater: anaerobic digestion comes of age. Chem. Eng., 56-64 (9 pages).

Kougias, P.G.; Boe, K.; Angelidaki, I., (2013). Effect of organic loading rate and feedstock composition on foaming in manure-based biogas reactors. Bioresour. Technol., 144: 1–7 (7 pages).

Lafita, C.; Penya-Roja, J. M.; Gabaldón, C., (2015). Anaerobic removal of 1-methoxy-2-propanol under ambient temperature in an EGSB reactor. Bioprocess Biosyst. Eng., 38: 2137–2146 (10 pages).

Landa, H.; Capella, A.; Jiménez, B., (1997). Particle size distribution in an effluent from an advanced primary treatment and its removal during filtration. Water Sci. Technol., 36 (4): 159–165 (7 pages).

Levenspiel, O., (2002). Ingeniería de las Reacciones Químicas. 2da Edición. Editorial Reverté. Mexico.

Li, X.M.; Guo, L.; Yang, O.; Ming, Z.G.; Xiang, L.D., (2007). Removal of carbon and nutrients from low strength domestic wastewater by expanded granular sludge bed-zeolite bed filtration (EGSB-ZBF) integrated treatment concept. Process Biochem., 42: 1173–1179 (7 pages).

Liao, R.; Li Y.; Yu X.; Shi P.; Wang Z.; Shen K.; Shi O.; Miao Y.; Li W.; Li A., (2014). Performance and microbial diversity of an expanded granular sludge bed reactor for high sulfate and nitrate waste brine treatment. J. Environ. Sci., 26: 717–725 (9 pages).

Lillo-Cámpora, O.I., (2017). Start-up and operation of an EGSB reactor through simultaneous autotrophic-heterotrophic denitrification for nitrogen, sulfur and organic matter removal. Thesis. Federico Santa María Technical University. Chile.

Liu, Y.H; Xu, H.L.; Show, K.Y.; Tay, J.H., (2002). Anaerobic granulation technology for wastewater treatment. World J. Microbiol. Biotechnol. 18: 99-113 (15 pages).

Liu, Y.H.; He, Y.L.; Yang, S.C.; An, C.J., (2006). Studies on the expansion characteristics of the granular bed present in EGSB bioreactors. Water SA., 32(4): 555–560 (06 pages).

Liu, J.Y.; Bian, H, D.; Cao, Y.L.; Zhong J.P.; Hu, J.; Liu, Q.; Qian G.R.; Liu F.; Tai J., (2011). Quick start-up of EGSB reactor treating fresh leachate of municipal solid waste. J. Shanghai University., 15(3): 212–217 (6 pages).

Londoño, Y.A.; Peñuela, G.A., (2015). Anaerobic biological treatment of methyl paraben in an expanded granular sludge bed (EGSB). Water Sci. Technol., 71 (11): 1604 – 1610 (7 pages).

Londoño, Y.A.; Rodríguez D.C.; Peñuela, G., (2012). The operation of two EGSB reactors under the application of different loads of oxytetracycline and florfenicol. Water Sci. Technol., 66 (12): 2578-2585 (8 pages).

López, I.; Borzacconi, L., (2011). Modelling of an EGSB treating sugarcane vinasse using first-order variable kinetics. Water Sci. Technol.,64: 2080-2088 (9 pages).

Mahmoud, N.; Zeeman, G.; Gijzen, H.; Lettinga, G., (2003). Solids removal in upflow anaerobic reactors, a review. Bioresour Technol.,  90: 1-19 (19 pages).

Mao, C.; Feng, Y.; Wang, X.; Ren, X., (2015). Review on research achievements of biogas from anaerobic digestion. Renewable Sustainable Energy Rev., 45: 540–555 (16 pages).

Metcalf, E., (2013). Wastewater Engineering-Treatment, Disposal, Reuse. Third edition. New York, USA. McGraw Hill.

Monsalvo, V.M.; Garcia-Mancha, N.; Puyol, D.; Mohedano, A. F.; Rodriguez, J.J., (2014). Anaerobic biodegradability of mixtures of pesticides in an expanded granular sludge bed reactor. Water Sci. Technol.,  69(3): 532 – 538 (7 pages).

Nagao, N.; Tajima, N.; Kawai, M.; Niwa, C.; Kurosawa, N.; Matsuyama, T., (2012). Maximum organic loading rate for the single-stage wet anaerobic digestion of food waste. Bioresour Technol., 118: 210–218 (9 pages).

Nicolella, C.; van Loosdrecht, M.C.M.; Heijnen, J.J., (2000).  Wastewater treatment with particulate biofilm reactors. J. Biotechnol., 80: 1–33 (33 pages).

Ozgun, H.; Dereli, R.K.; Ersahin, M.E.; Kinaci, C.; Spanjers, H.; van Lier J.B. (2013). A review of anaerobic membrane bioreactors for municipal wastewater treatment: Integration options, limitations and expectation. Sep. Purif. Technol., 118: 89–104 (16 pages).

Qinglin, X.; Yanhong, L.; Shaoyuan B.; Hongda J., (2012).  Effects of ORP, recycling rate, and HRT on simultaneous sulfate reduction and sulfur production in expanded granular sludge bed (EGSB) reactors under micro-aerobic conditions for treating molasses distillery wastewater. Water Sci. Technol., 66 (6): 1253-1262 (10 pages).

Ramos-Vaquerizo, F.; Cruz-Salomón, A.; Ríos-Valdovinos, E.; Pola-Albores, F.; Lagunas-Rivera, S.; Ruíz-Valdiviezo, V.M.; Simuta-Champo, R.; Moreira-Acosta, J., (2018). Anaerobic treatment of vinasse from sugarcane ethanol production in expanded granular sludge bed bioreactor. J. Chem. Eng. Process. Technol., 9(1): 375 (8 pages).

Rebac, S.; van Lier, J.B.; Lens, P.; van Cappellen, J.; Vermeulen, M.; Stams, A.J.M.; Swinkels, K.Th. M.; Lettinga, G., (1998). Psychrophilic (6-15 °C) high rate anaerobic traetment of malting wastewater in a two-module expanded granular sludge bed system. Biotech. Progress., 14: 856-864 (9 pages).

Rincón, B.; Borja, R.; González, J.M.; Portillo, M.C.; Sáiz-Jiménez, C., (2008). Influence of organic loading rate and hydraulic retention time on the performance, stability and microbial communities of one-stage anaerobic digestion of two-phase olive mill solid residue. Biochem Eng. J., 40: 253–261 (9 pages).

Rinzema, A.; Alphenaar, P.A.; Lettinga, G., (1993). Anaerobic digestion of long chain fatty acids in UASB-reactors and expanded granular sludge bed reactors. Process Biochem., 28: 527-537 (11 pages).

Sanchez, E.; Borja, R.; Weiland, P.; Travieso, L.; Martin, A., (2001). Effect of substrate concentration and temperature on the anaerobic digestion of piggery waste in a tropical climate. Process Biochem., 37(5): 483–489 (7 pages).

Schreyer, H.B.; Coughlin, R.W., (1999). Effects of stratification in a fluidized bed bioreactor during treatment of metal working wastewater. Biotechnol. Bioeng., 63: 129–140 (12 pages).

Scully, C.; Collins, G.; O’Flaherty, V., (2006). Anaerobic biological treatment of phenol at 9.5–15 ºC in an expanded granular sludge bed (EGSB)-based bioreactor.  Water Res., 40: 3737–3744 (8 pages).

Seghezzo, L., (2004). Anaerobic treatment of domestic wastewater in subtropical regions. Ph.D. thesis, Wageningen University, Wageningen, the Netherlands.

Seghezzo, L.; Zeeman, G.; van Lier, J.B.; Hamelers, H.V.M.; Lettinga, G., (1998). A review: The anaerobic treatment of sewage in UASB and EGSB reactors. Bioresour. Technol., 65: 175–190 (16 pages).

Sheldon, M.S.; Erdogan, I.G., (2016). Multi-stage EGSB/MBR treatment of soft drink industry wastewater. Chem. Eng. J., 285: 368–377 (10 pages).

Syutsubo, K.; Yoochatchaval, W.; Yoshida, H.; Nishiyama, K.; Okawara, M.; Sumino, H.; Araki, N.; Harada, H.; Ohashi, A., (2008). Changes of microbial characteristics of retained sludge during low-temperature operation of an EGSB reactor for low-strength wastewater treatment. Water Sci. Technol., 57(2): 277-281 (5 pages).

Teixeira-Correia, G.; Pérez-Pérez, T.; Pereda-Reyes, I.; Oliva-Merencio, D.; Zaiat, M.; Hong-Kwong, W., (2014). Mathematical Modeling of the Hydrodynamics of an EGSB Reactor. J. Chem. Chem. Eng., 8: 602-610 (9 pages).

van der Last, A.R.M.; Lettinga, G., (1992). Anaerobic treatment of domestic sewage under moderate climatic (Dutch) conditions using upflow reactors at increased superficial velocities. Water Sci. Technol., 25(7): 167-178 (12 pages).

van Lier, J.B.; van der Zee, F.; Tan, F.P.; Rebac, S.; Kleerebezem, R., (2001). Advances in high-rate anaerobic treatment: staging of reactor systems. Water Sci. Technol., 44(8): 15–25 (11 pages).

van Lier, J.B.; van der Zee, F.P.; Frijters, C.T.M.J.; Ersahin, M.E., (2015). Celebrating 40 years anaerobic sludge bed reactors for industrial wastewater treatment. Rev. Environ. Sci. Biotechnol., 14: 681–702 (22 pages).

van Lier, J.B., (2008). High-rate anaerobic wastewater treatment: diversifying from end-of-the-pipe treatment to resource-oriented conversion techniques. Water Sci. Technol., 57(8): 1137-1148 (12 pages).

von Sperling, M.; de Lemos-Chernicharo, C.A., (2005). Biological wastewater treatment in warm climate regions. IWA Publishing.

Wang, J.; Mahmood, O.; Ping Qiu, J.; Sheng Li, Y.; Chang, Y.; Dong Li, X., (2015). Anaerobic Treatment of Palm Oil Mill Effluent in Pilot-Scale Anaerobic EGSB Reactor. Biomed Res. Int., 2015: 1-7 (7 pages).

Welty, J.R., (2014). Fundamentals of momentum, heat, and mass transfer. 5th edition. ed. Wiley, Danver, MA. 2008.

Wiegant, W.M., (2001). Experiences and potential of anaerobic wastewater treatment in tropical regions. Water Sci. Technol., (44) 8: 107-113 (7 pages).

Wu J.; Bi L.; Zhang, J.B. Poncin, S.; Cao, Z.P.; Li, H.Z., (2012). Effects of increase modes of shear force on granule disruption in upflow anaerobic reactors. Water Res., 46: 3189–3196 (8 pages).

Xing, W.; Zuo, J. E.; Dai, N.; Cheng, J.; Li, J., (2009). Reactor performance and microbial community of an EGSB reactor operated at 20 and 15 °C. J. Appl. Microbiol., 107: 848–857 (10 pages).

Yong-Hong, L.; Yan-Ling, H.; Shu-Cheng, Y.; Chun-Jiang, A., (2006). Studies on the expansion characteristics of the granular bed present in EGSB bioreactors. Water SA., 32 (4): 555-560 (6 pages).

Yoochatchaval, W.; Ohashi, A.; Harada, H.; Yamaguchi, T.; Syutsubo, K., (2008). Characteristics of granular sludge in an EGSB reactor for treating low strength wastewater. Int. J. Environ. Res., 2(4): 319-328 (10 pages).

Zhang, L.Y; Yan, L.C.; Long, Z.X.; Mei, Z.Z., (2008). Startup and operation of anaerobic EGSB reactor treating palm oil mill effluent. J. Environ. Sci., 20: 658–663 (6 pages).

Zoutberg, G.R.; de Been, P., (1997). The Biobed EGSB (expanded granular sludge bed) system covers shortcomings of the upflow anaerobic sludge blanket reactor in the chemical industry. Water Sci. Technol., 35: 183–188 (6 pages).

Zoutberg, G.R.; Frankin, R., (1996). Anaerobic treatment of chemical and brewery wastewater with a new type of anaerobic reactor: the Biobed EGSB reactor. Water Sci. Technol., 34: 375–381 (7 pages).



Cruz-Salomón, A.; Ríos-Valdovinos, E.; Pola-Albores, F.; Lagunas-Rivera, S.; Meza-Gordillo, R.; Ruíz-Valdiviezo, V.M.; Cruz-Salomón, K.C., (2019). Expanded granular sludge bed bioreactor in wastewater treatment. Global J. Environ. Sci. Manage., 5(1): … , …

Letters to Editor

GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.