Document Type : ORIGINAL RESEARCH ARTICLE

Authors

GeoSAFER Northern Mindanao/ Cotabato Project, College of Forestry and Environmental Science, Central Mindanao University, Musuan, Maramag, Bukidnon, Philippines

Abstract

Flooding is one of the most occurring natural hazards every year risking the lives and properties of the affected communities, especially in Philippine context. To visualize the extent and mitigate the impacts of flood hazard in Malingon River in Valencia City, Bukidnon, this paper presents the combination of Geographic Information System, high-resolution Digital Elevation Model, land cover, soil, observed hydro-meteorological data; and the combined Hydrologic Engineering Center-Hydrologic Modeling System and River Analysis System models. The hydrologic model determines the precipitation-runoff relationships of the watershed and the hydraulic model calculates the flood depth and flow pattern in the floodplain area. The overall performance of hydrologic model during calibration was “very good fit” based on the criterion of Nash-Sutcliffe Coefficient of Model Efficiency, Percentage Bias and Root Mean Square Error – Observations Standard Deviation Ratio with the values of 0.87, -8.62 and 0.46, respectively. On the other hand, the performance of hydraulic model during error computation was “intermediate fit” using F measure analysis with a value of 0.56, using confusion matrix with 80.5% accuracy and the Root Mean Square Error of 0.47 meters. Flood hazard maps in 2, 5, 10, 25, 50 and 100-year return periods were generated as well as the number of flooded buildings in each flood hazard level and in different return periods were determined. The output of the study served as an important basis for a more informed decision and science-based recommendations in formulating local and regional policies for more effective and cost-efficient strategies relative to flood hazards.

Graphical Abstract

Flood hazard mapping in an urban area using combined hydrologic-hydraulic models and geospatial technologies

Highlights

  • Calibrated hydrologic model using observed discharge data and validated hydraulic model using acquired flooding information.
  • Flood hazard maps in varying return periods and number of exposed buildings are generated in Malingon River Basin using the combined hydrologic, hydraulic and geospatial technologies.
  • The increase of return period directly influenced the percent and flooded area and increasing number of flooded buildings.

Keywords

Main Subjects

Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, N., (2015). Hydrologic and water quality models: performance measures and evaluation criteria. Am. Soc. Agric. Biol. Eng., 58(6): 1763-1785 (23 pages).

Letters to Editor

GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.

CAPTCHA Image