Document Type : REVIEW PAPER


1 Department of Biotechnology, School of Biosciences and Technology, VIT, Vellore-632014, Tamil Nadu, India

2 Department of Biomedical Sciences, School of Biosciences and Technology, VIT, Vellore-632014, Tamil Nadu, India

3 Department of Biomedical Sciences, School of Biosciences and Technology, CO2 and Green Technology Centre, VIT, Vellore-632014, Tamil Nadu, India


A multitude of microbes are involved in the solubilisation of minerals and metals as this approach offers numerous advantages over traditional methods. This strategy is preferred as it is eco-friendly and economical, thus overcoming the drawbacks of the traditional approach of pyrometallurgy. Many different types of bacteria are employed in the process of Bioleaching, which are collectively grouped under chemolithotrophs, as they derive their energy from inorganic compounds. Bioleaching is the mobilization of metal cations from insoluble ores by microorganisms. All chemolithotropic bacteria are extremophiles since they have the ability to survive in extreme conditions. They carry out the process of Bioleaching through three mechanisms: Indirect, contact/ direct and cooperative bioleaching. This review gives a sneak peek into the different strains of chemolithotrophs which are used in bioleaching, and some recent work in the field. It also gives an insight into the general process and mechanism of Bioleaching, the study of which will pave way for developing better and efficient industrial bioleaching operations.

Graphical Abstract

A delve into the exploration of potential bacterial extremophiles used for metal recovery


  • Elucidation of chemolithotrophs and Bioleaching revealed that many different chemolithotrophs play an active role in the process of bioleaching of various metals
  • Recent breakthroughs on various extremophiles used for bioleaching prove its enormous potential for future research in this field
  • The most common and widely used organisms for bioleaching belong to Acidithiobacillusand Leptospirillum genus and they are explored in this review
  • Three different mechanisms of bioleaching exist currently- direct, indirect and cooperative bioleaching; studying the mechanisms is required to develop better commercial bioleaching processes.


Main Subjects

Acharya, C.; Kar, R.N.; Sukla, L.B., (1998). Leaching of chromite overburden with various native bacterial strains. World J. Microbiol. Biotechnol., 14: 769-771 (3 pages).

Acharya, C.; Kar, R.N.; Sukla, L.B., (2003). Studies on reaction mechanism of bioleaching of manganese ore. Miner. Eng., 16: 1027-1030 (4 pages).

Adekola, F.A.; Atata, R.F.; Ahmed, R.N.; Panda, S., (2011). Bioleaching of Zn (II) and Pb (II) from Nigerian sphalerite and galena ores by mixed culture of acidophilic bacteria. Trans. Nonferrous. Met. Soc. China, 21: 2535-2541 (7 pages).

Ai, C.; McCarthy, S.; Liang, Y.; Rudrappa, D.; Qiu, G.; Blum, P., (2017). Evolution of copper arsenate resistance for enhanced enargite bioleaching using the extreme thermoacidophile Metallosphaera sedula. J. Ind. Microbiol. Biotechnol., 44: 1613-1625 (13 pages).

Alfreider, A.; Vogt, C.; Hoffmann, D.; Babel, W., (2003). Diversity of ribulose-1, 5-bisphosphate carboxylase/oxygenase large-subunit genes from groun    dwater and aquifer microorganisms. Microb. Ecol., 45: 317-328 (12 pages).

Arndt, N.; Kesler, S.; Ganino, C., (2015). Classification, distribution and uses of ores and ore deposits. In Metals and Society, 15-40 (26 pages).

Arshadi, M.; Mousavi, S.M., (2015). Multi-objective optimization of heavy metals bioleaching from discarded mobile phone PCBs: Simultaneous Cu and Ni recovery using Acidithiobacillus ferrooxidans. Sep. Purif. Technol., 147: 210-219 (10 pages).

Auernik, K.S.; Maezato, Y.; Blum, P.H.; Kelly, R.M., (2008). The genome sequence of the metal-mobilizing, extremely thermoacidophilic archaeon Metallosphaera sedula provides insights into bioleaching-associated metabolism. Appl. Environ. Microbiol., 74: 682– 692 (11 pages).

Bajestani, M.I.; Mousavi, S.M.; Shojaosadati, S.A., (2014). Bioleaching of heavy metals from spent household batteries using Acidithiobacillus ferrooxidans: statistical evaluation and optimization. Sep. Purif. Technol., 132: 309-316 (8 pages).

Batty, J.D.; Rorke, G.V., (2006). Development and commercial demonstration of the BioCOP™ thermophile process. Hydrometallurgy, 83: 83-89 (7 pages).

Bertrand, J.C., (2015). Environmental microbiology: Fundamentals and applications 993. Ed., Springer.

Blázquez, M.L.; Alvarez, A.; Ballester, A.; González, F.; Muñoz, J.A., (1999). Bioleaching behaviour of chalcopyrite in the presence of silver at 35 and 68 C. Process Metallurgy, 9: 137-147 (11 pages).

Bosecker, K., (1997). Bioleaching: metal solubilization by microorganisms. FEMS Microbiol. Rev., 20: 591–604 (14 pages).

Brierley, C.L.; Brierley, J.A., (2013). Progress in bioleaching: part B: applications of microbial processes by the minerals industries. Appl. Microbiol. Biotechnol., 97: 7543–7552 (10 pages).

Brierley, J.A.; Brierley, C.L., (2001). Present and future commercial applications of biohydrometallurgy. Hydrometallurgy, 59: 33-239 (207 pages).

Castro, I.M.; Fietto, J.L.R.; Vieira, R.X.; Trópia, M.J.M.; Campos, L.M.M.; Paniago, E.B.; Brandão, R.L., (2000). Bioleaching of zinc and nickel from silicates using Aspergillus niger cultures. Hydrometallurgy, 57: 39-49 (11 pages).

Chaerun, S.K.; Putri, F.Y.; Mubarok, M.Z.; Minwal, W.P.; Ichlas, Z.T., (2017). Bioleaching of Supergene Porphyry Copper Ores from Sungai Mak Gorontalo of Indonesia by an Iron-and Sulfur-Oxidizing Mixotrophic Bacterium. Solid State Phenom., 262: 20-23 (4 pages).

Chen, G.; Sun, Z.; Liu, Y., (2016). Continued multicolumns bioleaching for low grade uranium ore at a certain uranium deposit.  J. Nanomater., 2016 (7 pages).

Chen, S.Y.; Lin, J.G., (2004). Bioleaching of heavy metals from contaminated sediment by indigenous sulfur-oxidizing bacteria in an airlift bioreactor: effects of sulfur concentration. Water Res., 38: 3205–3214 (10 pages).

Coram, N.J.; Rawlings, D.E., (2002). Molecular relationship between two groups of Leptospirillum and the finding that Leptospirillum ferriphilum sp. nov. dominates South African commercial biooxidation tanks which operate at 40 8C. Appl Environ Microbiol., 68: 838–845 (8 pages).

Corkhill, C.L.; Wincott, P.L.; Lloyd, J.R.; Vaughan, D.J., (2008). The oxidative dissolution of arsenopyrite (FeAsS) and enargite (Cu3AsS4) by Leptospirillum ferrooxidans. Geochim. Cosmochim. Acta., 72: 5616-5633 (18 pages).

Davis, R.A.; Welty, A.T.; Borrego. J.; Morales, J.A.; Pendon, J.G.; Ryan, J.G., (2000). Rio Tinto estuary (Spain): 5000 years of pollution. Environ. Geol., 39: 1107-1116 (10 pages).

Demergasso, C.S.; Castillo, D.; Casamayor, E.O., (2005). Molecular characterization of microbial populations in a low-grade copper ore bioleaching test heap. Hydrometallurgy, 80: 241-253 (13 pages).

d'Hugues, P.; Joulian, C.; Spolaore, P.; Michel, C.; Garrido, F.; Morin, D., (2008). Continuous bioleaching of a pyrite concentrate in stirred reactors: population dynamics and exopolysaccharide production vs. bioleaching performance. Hydrometallurgy, 94: 34–41 (8 pages).

Dinsdale E.A.; Edwards, R.A.; Hall, D.; Angly, F.; Breitbart, M.; Brulc, J.M.; Furlan, M.; Desnues, C.; Haynes, M.; Li, L.; McDaniel, L.; (2008) Functional metagenomic profiling of nine biomes. Nature, 452: 629 (35 pages).

Donati, E.R.; Sand, W., (2007). Microbial processing of metal sulfides. Ed., Springer Science and Business Media.

Dunfield, K.E.; King, G.M., (2004) Molecular analysis of carbon monoxide-oxidizing bacteria associated with recent Hawaiian volcanic deposits. Appl. Environ. Microbiol., 70: 4242-4248 (7 pages).

Ehrlich, H.L.; Newman, D.K.; Kappler, A. eds., (2015). Ehrlich’s geomicrobiology. CRC press.

Ellis, R.J., (1979). The most abundant protein in the world. Trends Biochem. Sci., 4: 241-244 (4 pages).

Feng, Y.; Kang, J.; Li, H.; Zhang, X.; Deng, X.; Sun, M.; Chen, X., (2017). Effects of Acidithiobacillus ferrooxidans and Fe (III) on pyrite–pyrolusite bioleaching process. Metall. Res. Technol., 114: 402 (5 pages).

Friedrich, C.G.; Rother, D.; Bardischewsky, F.; Quentmeier, A.; Fischer, J., (2001). Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism? Appl. Environ. Microbiol., 67: 2873–2882 (10 pages).

Galleguillos, P.A.; Music, V.; Acosta, M.; Salazar, C.N.; Quatrini, R.; Shmaryahu, A.; Holmes, D.; Velasquez, A.; Espoz, C.; Pinilla, C.; Demergasso, C.S., (2013). Temporal dynamics of genes involved in metabolic pathways of C and N of L. ferriphilum, in the industrial bioleaching process of Escondida mine. Chile Adv. Mater. Res., 825: 162–165 (4 pages).

García-Moyano, A.; González-Toril, E.; Moreno-Paz, M.; Parro, V.; Amils, R., (2008). Evaluation of Leptospirillum spp. in the Río Tinto, a model of interest to biohydrometallurgy. Hydrometallurgy, 94: 155–161 (7 pages).

Gautier, V.; Escobar, B.; Vargas, T., (2008). Cooperative action of attached and planktonic cells during bioleaching of chalcopyrite with Sulfolobus metallicus at 70 C. Hydrometallurgy, 94: 121-126 (6 pages).

Gentina, J.C.; Acevedo, F., (2013). Application of bioleaching to copper mining in Chile. Electron. J. Biotechnol., 16: 1-14 (14 pages).

Giaveno, A.; Lavalle, L.; Chiacchiarini, P.; Donati, E., (2007). Bioleaching of zinc from low-grade complex sulfide ores in an airlift by isolated Leptospirillum ferrooxidans. Hydrometallurgy, 89: 117-126 (10 pages).

Gonzalez-Toril, E.; Llobet-Brossa, E.; Casamayor, E.O.; Amann, R.; Amils, R., (2003). Microbial ecology of an extreme acidic environment, the Tinto River. Appl. Environ. Microbiol., 69: 4853-4865 (13 pages).

Gu, W.; Bai, J.; Dong, B.; Zhuang, X.; Zhao, J.; Zhang, C.; Wang, J.; Shih, K., (2017). Catalytic effect of graphene in bioleaching copper from waste printed circuit boards by Acidithiobacillus ferrooxidans. Hydrometallurgy, 171:172-178 (7 pages).

Hallberg, K.B.; Johnson, D.B., (2001). Biodiversity of acidophilic prokaryotes. Adv. Appl. Microbiol., 49: 37–84 (48 pages).

Hallberg, K.B.; Lindstrom, E.B., (1994). Characterization of Thiobacillus caldus sp. nov., a moderately thermophilic acidophile. Microbiol., 140: 3451–3456 (6 pages).

Harneit, K,; Göksel, A.; Kock, D.; Klock, J.H.; Gehrke, T.; Sand, W., (2006). Adhesion to metal sulfide surfaces by cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans. Hydrometallurgy, 83: 245-254 (10 pages).

Harrison, A.P. Jr., (1984). The acidophilic thiobacilli and other acidophilic bacteria that share their habitat. Annu. Rev. Microbiol., 38: 265–269 (5 pages).

Harrison, A.P. Jr.; Norris, P.R., (1985). Leptospirillum ferrooxidans and similar bacteria: some characteristics and genomic diversity. FEMS Microbiol. Lett., 30: 99–102 (4 pages).

Hocheng, H.; Su, C.; Jadhav, U.U., (2014). Bioleaching of metals from steel slag by Acidithiobacillus thiooxidans culture supernatant. Chemosphere, 117: 652-657 (6 pages).

Huang, T.; Gong, W.Q.; Bao, G.M.; Lei, S.M., (2013). Bioleaching of phosphorus from hematite with mixed bacteria. Adv. Mat. Res., 823: 613-617 (5 pages).

Huber, G.; Spinnler, C.; Gambacorta, A.; Stetter, K.O., (1989). Metallosphaera sedula gen. and sp. nov. represents a new genus of aerobic, metalmobilizing, thermoacidophilic archaebacteria. Syst. Appl. Microbiol., 12: 38–47 (10 pages).

lyas, S.; Chi, R.; Bhatti, H.N.; Bhatti, I.A.; Ghauri, M.A., (2012). Column bioleaching of low-grade mining ore containing high level of smithsonite, talc, sphaerocobaltite and azurite. Bioprocess Biosyst. Eng., 35: 433-440 (8 pages).

Issotta, F.; Galleguillos, P.A.; Moya-Beltrán, A.; Davis-Belmar, C.S.; Rautenbach, G.; Covarrubias, P.C.; Acosta, M.; Ossandon, F.J.; Contador, Y.; Holmes, D.S.; MarínEliantonio, S.; Quatrini, R.; Demergasso, C., (2016). Draft genome sequence of chloride-tolerant Leptospirillum ferriphilum Sp-Cl from industrial bioleaching operations in northern Chile. Stand Genomic Sci., 11:19 (7 pages).

Jang, H.C.; Valix, M., (2017). Overcoming the bacteriostatic effects of heavy metals on Acidithiobacillus thiooxidans for direct bioleaching of saprolitic Ni laterite ores. Hydrometallurgy, 168: 21-25 (5 pages).

Johnson, D.B.; Hallberg, K.B., (2009). Carbon, iron and sulfur metabolism in acidophilic micro-organisms. Adv. Microb. Physiol., 54: 202–256 (55 pages).

Jonglertjunya, W.; Rubcumintara, T., (2013). Titanium and iron dissolutions from ilmenite by acid leaching and microbiological oxidation techniques. ‎Asia-Pac. J. C 8: 323-330 (8 pages).

Jordan, H.; Sanhueza, A.; Gautier, V.; Escobar, B.; Vargas, T., (2006). Electrochemical study of the catalytic influence of Sulfolobus metallicus in the bioleaching of chalcopyrite at 70 °C. Hydrometallurgy, 83: 55–62 (8 pages).

Kelly, D.P.; Wood, A.P., (2000). Re-classification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. Int. J. Syst. Evol. Microbiol., 50: 511–516 (6 pages).

Lee, E.; Han, Y.; Park, J.; Hong, J.; Silva, R.A.; Kim, S.; Kim, H., (2015). Bioleaching of arsenic from highly contaminated mine tailings using Acidithiobacillus thiooxidans. J. Environ. Manage., 147:124-131 (8 pages).

Lengeler, J.W.; Drews, G.; Schlegel, H.G. eds., (1999). Biology of the Prokaryotes. Georg Thieme Verlag.

Liu, J.S.; Xie, X.H.; Xiao, S.M.; Wang, X.M.; Zhao, W.J.; Tian, Z.L., (2007). Isolation of Leptospirillum ferriphilum by single-layered solid medium. J. Cent. South Univ. Technol., 14:467-473 (7 pages).

Liu, X.R.; Jiang, S.C.; Liu, Y.J.; Li, H.; Wang, H.J., (2013). Biodesulfurization of vanadium-bearing titanomagnetite concentrates and pH control of bioleaching solution. Int. J. Min. Met. Mater., 20: 925-930 (6 pages).

Merino, M.P.; Andrews, B.A.; Parada, P.; Asenjo, J.A., (2016). Characterization of Ferroplasma acidiphilum growing in pure and mixed culture with Leptospirillum ferriphilum. Biotechnol. Prog., 32: 1390-1396 (7 pages).

Muñoz, J.; Gómez, C.; Ballester, A.; Blázquez, M.; González, F.; Figueroa, M., (1998). Electrochemical behaviour of chalcopyrite in the presence of silver and Sulfolobus bacteria. J. Appl. Electrochem., 28: 49–56 (8 pages).

Natarajan, K.A., (2016). Biomineralization and Biobeneficiation of Bauxite. T. Indian I. Metals, 69: 15-21 (7 pages).

Ngoma, E.; Shaik, K.; Borja, D.; Smart, M.; Park, J.H.; Kim, H.J.; Petersen, J.; Harrison, S.T., (2017). Investigating the bioleaching of an arsenic mine tailing using a mixed mesophilic culture. Solid State Phenom., 262: 668-672 (5 pages).

Nguyen, T.A.; Fu, C.C.; Juang, R.S.; (2016). Biosorption and biodegradation of a sulfur dye in high-strength dyeing wastewater by Acidithiobacillus thiooxidans. J. Environ. Manage., 182: 265-271 (7 pages).

Nirola, R.; Megharaj, M.; Beecham, S.; Aryal, R.; Thavamani, P.; Venkateswarlu, K.; Saint, C., (2016). Remediation of metalliferous mines, revegetation challenges and emerging prospects in semi-arid and arid conditions. Environ. Sci. Pollut. Res. 23: 20131-20150 (20 pages).

Norris, P.R.; Burton, N.P.; Foulis, N.A., (2000) Acidophiles in bioreactor mineral processing. Extremophiles, 4:71-76 (6 pages).

Norris, P.R.; Murrel, J.C.; Hinson, D., (1995). The potential for diazotrophy in iron- and sulfur-oxidizing acidophilic bacteria. Arch. Microbiol., 164: 294–300 (7 pages).

Okibe, N.; Johnson, D.B., (2004). Biooxidation of pyrite by defined mixed cultures of moderately thermophilic acidophiles in pH-controlled bioreactors: significance of microbial interactions. Biotechnol. Bioeng., 87: 574–583 (10 pages).

Olson, G.J.; Brierley, J.A.; Brierley, C.L., (2003). Bioleaching review part B: progress in bioleaching: applications of microbial processes by the minerals industries. Appl. Microbiol. Biotechnol., 63: 249–257 (9 pages).

Oren; Aharon, (2009). Chemolithotrophy. In: eLS. John Wiley and Sons Ltd, Chichester.

Panda, S.; Akcil, A.; Pradhan, N.; Deveci, H., (2015). Current scenario of chalcopyrite bioleaching: A review on the recent advances to its heap-leach technology. Bioresour. Technol., 196: 694-706 (13 pages).

Park, J.; Han, Y.; Lee, E.; Choi, U.; Yoo, K.; Song, Y.; Kim, H., (2014). Bioleaching of highly concentrated arsenic mine tailings by Acidithiobacillus ferrooxidans. Sep. Purif. Technol., 133: 291-296 (6 pages).

Pistaccio, L.; Curutchet, G.; Donati, E.; Tedesco, P., (1994). Analysis of molybdenite bioleaching by Thiobacillus ferrooxidans in the absence of iron (II). Biotechnol. Lett., 16: 189-194 (6 pages).

Rastegar, S.O.; Mousavi, S.M.; Rezaei, M.; Shojaosadati, S.A., (2014). Statistical evaluation and optimization of effective parameters in bioleaching of metals from molybdenite concentrate using Acidianus brierleyi. J. Ind. Eng. Chem., 20: 3096-3101 (6 pages).

Rastegar, S.O.; Mousavi, S.M.; Shojaosadati, S.A.; Mamoory, R.S., (2015). Bioleaching of V, Ni, and Cu from residual produced in oil fired furnaces using Acidithiobacillus ferrooxidans. Hydrometallurgy, 157: 50-59 (10 pages).

Raven, J.A., (1996). Inorganic carbon assimilation by marine biota. J. Exp. Mar. Biol. Ecol., 203: 39-47 (9 pages).

Rawlings, D.E., (2002). Heavy metal mining using microbes. Annu. Rev. Microbiol., 56:65-91 (27 pages).

Rawlings, D.E., (2005). Characteristics and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates. Microb. Cell Fact., 4: 13 (15 pages).

Rawlings, D.E.; Coram, N.J.; Gardner, M.N.; Deane, S.M., (1999b). Thiobacillus caldus and Leptospirillum ferrooxidans are widely distributed in continuous flow biooxidation tanks used to treat a variety of ores and concentrates. Process Metallurgy, 9: 777-786 (10 pages).

Rawlings, D.E.; Dew, D.; du Plessis C., (2003). Biomineralization of metal-containing ores and concentrates. Trends Biotechnol., 21: 38-44 (7 pages).

Rawlings, D.E.; Tributsch, H.; Hansford, G.S., (1999a). Reasons why ‘Leptospirillum’-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores. Microbiol., 145:5-13 (9 pages).

Rodríguez, Y.; Ballester, A.; Blázquez, M.L.; González, F.; Muñoz, J.A., (2003a). Study of bacterial attachment during the bioleaching of pyrite, chalcopyrite, and sphalerite. Geomicrobiol. J., 20: 131-141 (11 pages).

Rodríguez, Y.; Ballester, A.; Blázquez, M.; González, F.; Muñoz, J., (2003b). New information on the chalcopyrite bioleaching mechanism at low and high temperature. Hydrometallurgy, 71: 47–56 (10 pages).

Rohwerder, T.; Gehrke, T.; Kinzler, K.; Sand, W., (2003). Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl. Microbiol. Biotechnol., 63: 239-248 (10 pages).

Romano, P.; Blázquez, M.L.; Ballester, A.; González, F.; Alguacil, F.J., (2001). Selective copper–iron dissolution from a molybdenite concentrate using bacterial leaching. J. Chem. Technol. Biotechnol., 76: 723-728 (6 pages).

Roshani, M.; Shojaosadati, S.A.; Safdari, S.J.; Vasheghani-Farahani, E.; Mirjalili, K.; Manafi, Z., (2017). Bioleaching of Molybdenum by Two New Thermophilic Strains Isolated and Characterized. Iran J. Chem. Chem. Eng., 36: 183-194 (12 pages).

Sand, W.; Gehrke, T.; Jozsa, P.G.; Schippers, A., (2001). (Bio) chemistry of bacterial leaching—direct vs. indirect bioleaching. Hydrometallurgy, 59: 159-175 (17 pages).

Shamsuddin, M., (1986) Metal Recovery from Scrap and Waste. JOM, 38: 24– 31 (8 pages).

Sheoran, A.S.; Sheoran, V., (2006). Heavy metal removal mechanism of acid mine drainage in wetlands: A critical review. Miner. Eng., 19: 105-116 (12 pages).

Smith, S.L.; Johnson, D.B.; (2018). Growth of Leptospirillum ferriphilum in sulfur medium in co-culture with Acidithiobacillus caldus. Extremophiles, 1-7 (7 pages).

Stott, M.; Sutton, D.; Watling, H.; Franzmann, P., (2003). Comparative leaching of chalcopyrite by selected acidophilic bacteria and archaea. Geomicrobiol. J., 20: 215–230 (16 pages).

Suzuki, I., (2001). Microbial leaching of metals from sulfide minerals. Biotechnol. Adv., 19: 119–132 (14 pages).

Tolli, J.; King, G.M., (2005). Diversity and Structure of Bacterial Chemolithotrophic Communities in Pine Forest and Agroecosystem Soils.  Appl. Environ. Microbiol., 71: 8411–8418 (8 pages).

Travisany, D.; Cortés, M.P.; Latorre, M.; Di Genova, A.; Budinich, M.; Bobadilla-Fazzini, R.; Parada, P.; González, M.; Maass, A., (2014) A new genome of Acidithiobacillus thiooxidans provides insights into adaptation to a bioleaching environment. Res. Microbiol., 165: 743–752 (10 pages).

Tributsch, H., (1999). Direct versus indirect bioleaching. Process Metall., 9: 51-60 (10 pages).

Tyson, G.W.; Chapman, J.; Hugenholtz, P.; Allen, E.E.; Ram, R.J.; Richardson, P.M.; Solovyev, V.V.; Rubin, E.M.; Rokhsar, D.S.; Banfield, J.F., (2004). Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature, 428: 37–43 (7 pages).

Valdés, J.; Pedroso, I.; Quatrini, R.; Dodson, R.J.; Tettelin, H.; Blake, R.; Eisen, J.A.; Holmes, D.S., (2008). Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications. BMC genom., 9: 597 (24 pages).

Valdes, J.; Ossandon, F.; Quatrini R.; Dopson, M.; Holmes, D.S., (2011). Draft genome sequence of the extremely acidophilic biomining bacterium Acidithiobacillus thiooxidans ATCC 19377 provides insights into the evolution of the Acidithiobacillus genus. J. Bacteriol., 193:7003–7004 (2 pages).

Valdes, J.; Quatrini, R.; Hallberg, K.; Dopson, M.; Valenzuela, P.D.; Holmes, D.S., (2009). Draft genome sequence of the extremely acidophilic bacterium Acidithiobacillus caldus ATCC 51756 reveals metabolic versatility in the genus Acidithiobacillus. J. Bacteriol., 191: 5877-5878 (2 pages).

Veglio, F.; Quaresima, R.; Fornari, P., (2003) Recovery of Valuable Metals from Electronic and Galvanic Industrial Wastes by Leaching and Electro Winning. Waste Manag., 23: 245–252 (8 pages).

Venkateswarlu, K.; Nirola, R.; Kuppusamy, S.; Thavamani, P.; Naidu, R.; Megharaj, M., (2016). Abandoned metalliferous mines: ecological impacts and potential approaches for reclamation. Rev. Environ. Sci. Bio. Technol., 15: 327-354 (28 pages).

Vilcáez, J.; Suto, K.; Inoue, C., (2008). Bioleaching of chalcopyrite with thermophiles: temperature–pH–ORP dependence. Int. J. Miner. Process., 88: 37-44 (8 pages).

Wang, J.; Bai, J.; Xu, J.; Liang, B., (2009). Bioleaching of metals from printed wire boards by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans and their mixture. J. Hazard. Mater., 172:1100-1105 (6 pages).

Wang, X.; Liao, R.; Zhao, H.; Hong, M.; Huang, X.; Peng, H.; Wen, W.; Qin, W.; Qiu, G.; Huang, C.; Wang, J., (2017). Synergetic effect of pyrite on strengthening bornite bioleaching by Leptospirillum ferriphilum. Hydrometallurgy, 176: 9-16 (8 pages).

Wang, Y.; Li, K.; Chen, X.; Zhou, H., (2018). Responses of microbial community to pH stress in bioleaching of low grade copper sulfide. Bioresour. Technol., 249: 146-153 (8 pages).

Wang, Y.S.; Pan, Z.Y.; Lang, J.M.; Xu, J.M.; Zheng, Y.G., (2007) Bioleaching of chromium from tannery sludge by indigenous Acidithiobacillus thiooxidans. J. Hazard. Mater., 147: 319-324 (6 pages).

Watt, M.; Hugenholtz, P.; White, R.; Vinall, K., (2006). Numbers and locations of native bacteria on field-grown wheat roots quantified by fluorescence in situ hybridization (FISH). EMI., 8: 871-884 (14 pages).

Xia, L.X.; Liu, J.S.; Li, X.I.A.O.; Jia, Z.E.N.G.; Li, B.M.; Geng, M.M.; Qiu, G.Z., (2008). Single and cooperative bioleaching of sphalerite by two kinds of bacteria—Acidithiobacillus ferriooxidans and Acidithiobacillus thiooxidans. Trans. Nonferrous Met. Soc. China., 18: 190-195 (6 pages).

Xingyu, L.; Biao, W.; Bowei, C.; Jiankang, W.; Renman, R.; Guocheng, Y.; Dianzuo, W., (2010). Bioleaching of chalcocite started at different pH: Response of the microbial community to environmental stress and leaching kinetics. Hydrometallurgy, 103: 1-6 (6 pages).

Yin, H.; Zhang, X.; Li, X.; He, Z.; Liang, Y.; Guo, X.; Hu, Q.; Xiao, Y.; Cong, J.; Ma, L.; Niu, J., (2014). Whole-genome sequencing reveals novel insights into sulfur oxidation in the extremophile Acidithiobacillus thiooxidans. BMC Microbiol., 14:179 (14 pages).

Zhang, G.; Chao, X.; Guo, P.; Cao, J.; Yang, C., (2015). Catalytic effect of Ag+ on arsenic bioleaching from orpiment (As2S3) in batch tests with Acidithiobacillus ferrooxidans and Sulfobacillus sibiricus. J. Hazard. Mater., 283: 117-122 (6 pages).

Zhang, J.; Zhang, X.; Ni, Y.; Yang, X.; Li, H., (2007). Bioleaching of arsenic from medicinal realgar by pure and mixed cultures. Process Biochem., 42: 1265-1271 (7 pages).

Zhang, R.; Wei, D.; Shen, Y.; Liu, W.; Lu, T.; Han, C., (2016a). Catalytic effect of polyethylene glycol on sulfur oxidation in chalcopyrite bioleaching by Acidithiobacillus ferrooxidans. Miner. Eng., 95: 74-78 (5 pages).

Zhang, X.; Feng, X.; Tao, J.; Ma, L.; Xiao, Y.; Liang, Y.; Liu, X.; Yin, H., (2016b). Comparative genomics of the extreme acidophile Acidithiobacillus thiooxidans reveals intraspecific divergence and niche adaptation. Int. J. Mol. Sci., 17:1355 (1355 pages).

Zhou, W.; Wu, X.J.; Cao, X.; Huang, X.; Tan, C.; Tian, J.; Liu, H.; Wang, J.; Zhang, H., (2013). Ni 3 S 2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution. Energy Environ. Sci., 6: 2921-2924 (4 pages).

Zhu, N.; Shi, C.; Shang, R.; Yang, C.; Xu, Z.; Wu, P., (2017). Immobilization of Acidithiobacillus ferrooxidans on cotton gauze for biological oxidation of ferrous ions in a batch bioreactor. Biotechnol. Appl. Biochem., 64:727-734 (8 pages).

Letters to Editor

GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.