1 Departamento de Engenharia de Materiais, Laboratório de Polímeros – LAPOL, Universidade Federal do Rio Grande do Sul-UFRGS, 9500 Bento Gonçalves Avenue, Postal Code 15010, Porto Alegre 91501-970, Brazil

2 Softer Brasil Compostos Termoplásticos, 275 Edgar Hoffmeister Avenue, Campo Bom 93700-000, Brazil


There is a growing consumer market for products that proclaim to decrease microorganism counts to prevent infections. Most of these products are loaded with silver in its ionic or nanoparticle form. Through use or during production, these particles can find their way into the soil and cause an impact in microbial and plant communities. This study aims to evaluate the impact of silver based particles in Avena byzantina (oat), Lactuca sativa (lettuce) and Raphanus sativus (radish) development and in the soil microorganism abundance. Oat, lettuce and radish plants were cultivated in soil contaminated with particles of bentonite organomodified with silver (Ag+_bentonite), silver phosphate glass (Ag+_phosphate) and silver nanoparticles adsorbed on fumed silica (AgNp_silica). Plant development and microorganisms’ abundance were evaluated. To some degree, Ag+_bentonite impacted plants development and AgNp_silica causes an adverse effect on microbial abundance. The impact on plants and microorganisms was contradictory and varied according to soil and particles physicochemical characteristics.

Graphical Abstract


  • Impact of the additives was expressed in different levels
  • Silver ions affect the plant development
  • Silver nanoparticles cause an adverse effect on microbial abundance


Main Subjects

Abdel-Ghani, N.T.; Rawash, E.S.A.; El-Chaghaby, G.A., (2016). Equilibrium and kinetic study for the adsorption of p-nitrophenol from wastewater using olive cake based activated carbon. Global J. Environ. Sci. Manage., 2(1): 11-18 (8 pages).

Alaribe, F.O.; Agamuthu, P., (2015). Assessment of phytoremediation potentials of Lantana camara in Pb impacted soil with organic waste additives. Ecol. Eng., 83: 513–520 (8 pages).

Anjum, N.A.; Gill, S.S.; Duarte, A.C.; Pereira, E.; Ahmad, I., (2013). Silver nanoparticles in soil–plant systems. J. Nanopart. Res., 15: 1896 (26 pages). 

Brevik, E.C.; Cerdà, A.; Mataix-Solera, J.; Pereg, L.; Quinton, J.N.; Six, J.; Oost, K.V., (2015). The interdisciplinary nature of SOIL. Soil, 1: 117–129, (13 pages).

Calder, A.J.; Dimkpa, C.O.; Mclean, J.E.; Britt, D.W.; Johnson, W.; Anderson, A.J., (2012). Soil components mitigate the antimicrobial effects of silver nanoparticles towards a beneficial soil bacterium, Pseudomonas chlororaphis O6. Sci. Total Environ., 429: 215-222 (8 pages).

Coutris, C.; Joner, E.J.; Oughton, D.H., (2012). Aging and soil organic matter content affect the fate of silver nanoparticles in soil. Sci. Total Environ., 420: 327-333 (7 pages).

De Oliveira, V.H.; Melo, L.; Abreu, C.A.; Coscione, A.R., (2016). Influences of soil pH on cadmium toxicity to eight plant species. Ecotoxicol. Environ. Contam., 11(1): 45-52 (8 pages).

Dell’Amico, E.; Cavalca, L.; Andreoni, V., (2008) Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria. Soil. Biol. Biochem., 40: 74–84 (11 pages).

Deredjian, A.; Colinon, C.; Hien, E.; Brothier, E.; Youenou, B.; Cournoyer, B.; Dequiedt, S.; Hartmann, A.; Jolivet,C.; Houot, S.; Ranjard, L.; Saby, N.P.A.; Nazaret, S., (2014) Low occurrence of Pseudomonas aeruginosa in agricultural soils with and without organic amendment. Front. Cell. Infect. Microbiol., 4: 1-12 (12 pages).

Dimkpa, C.O.; Mclean, J.E.; Martineau, N.; Britt, D.W.; Haverkamp, R.; Anderson, A.J., (2013). Silver nanoparticles disrupt wheat (Triticum aestivum l.) growth in a sand matrix. Environ. Sci. Technol., 47: 1082-1090 (9 pages).

Dimkpa, C.O.; Merten, D.; Svatos, A.; Büchel, G.; Kothe, E., (2009). Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores. Soil Biol. Biochem., 41: 154-162 (9 pages).

Doolette, C.L.; Mclaughlina, M.J.; Kirby, J.K.; Navarro, D.A., (2015). Bioavailability of silver and silver sulfide nanoparticles to lettuce (Lactuca sativa): Effect of agricultural amendments on plant uptake. J. Hazard. Mater., 300: 788-795 (8 pages).

El Badawy, A.; Luxton, T. P.; Silva, R.; Scheckel, K. G.; Suidan, M.T.; Tolaymat, T., 2010. Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ. Sci. Technol., 44: 1260-1266 (7 pages).

Furtado, L.M.; Bundschuh, M.; Metcalfe, C.D., (2016). Monitoring the fate and transformation of silver nanoparticles in natural waters. Bull. Environ. Contam. Toxicol., 97: 449-455 (7 pages).

Hammer, Ø.; Harper, D.A. T.; Ryan, P.D., (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron., 4(1):(9 pages).

He, S.; Feng, Y.; Ni, J.; Sun, Y.; Xue, L.; Feng, Y.; Yu, Y.; Lin, X.; Yang, L., (2016). Different responses of soil microbial metabolic activity to silver and iron oxide nanoparticles. Chemosphere, 147: 195-202 (8 pages).

Joshi, N.; Ngwenya, B.T.; French, C.E., (2012). Enhanced resistance to nanoparticle toxicity is conferred by overproduction of extracellular polymeric substances. J. Hazard. Mater. 241-242: 363-370 (8 pages).

Judy, J.D.; Kirby, K.K.; Creamer, C.; Mclaughlin, M.J.; Fiebiger, C.; Wright, C.; Cavagnaro, T.R.; Bertsch, P.M., (2015). Effects of silver sulfide nanomaterials on mycorrhizal colonization of tomato plants and soil microbial communities in biosolid-amended soil. Environ. Pollut., 206: 256-263 (8 pages).

Kaveh, R.; Li, Y-S.; Ranjbar, S.; Tehrani, R.; Brueck, C.L.; Aken, B.A. (2013). Changes in arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environ. Sci. Technol., 47: 10637-10644 (8 pages).

Keeling, S.M.; Werren, G., (2005).  Phytoremediation: The uptake of metals and metalloids by rhodes grass grown on metal-contaminated soil. Remediation, 15(2): 53-61 (9 pages).

Keesstra, S.D.; Bouma, J.; Wallinga, J.; Tittonell, P.; Smith, P.; Cerdà, A.; Montanarella, L.; Quinton, J.N.; Pachepsky, Y.; van der Putten, W.H.; Bardgett, R.D.; Moolenaar, S.; Mol, G.; Jansen, B.;  Fresco, L.O., (2016). The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil, 2: 111–128 (18 pages).

Keesstra, S.D.; Geissen, V.; Mosse, K.; Piiranen, S.; Scudiero, E.; Leistra, M.; van Schaik, L., (2012). Soil as a filter for groundwater quality. Curr. Opin. Environ. Sustain., 4: 507–516 (10 Pages).

Kumari, M.; Mukherjee, A.; Chandrasekaran, N., (2009). Genotoxicity of silver nanoparticles in Allium cepa. ‎Sci. Total Environ., 407: 5243-5246. (9 pages)

Lemire, J.A.; Harrison, J.J.; Turner, R.J., (2013). Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nature Reviews, 11: 371-384 (14 pages).

Levard, C.; Hotze, E.M.; Colman, B.P.; Dale, A.L.; Truong, L.; Yang, X.Y.; Bone, A.J.; Brown Jr., G. E.; Tanguay, R.L.; Di Giulio, R.T.; Bernhardt, E.S.; Meyer, J.N.; Wiesner, M.R.; Lowry, G.V., (2013). Sulfidation of silver nanoparticles: natural antidote to their toxicity. Environ. Sci. Technol., 47: 13440−13448 (9 pages).

Levard, C.; Hotze, E.M.; Lowry, G.V.; Brown Jr, G.E., (2012). Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ. Sci. Technol., 46: 6900-6914 (15 pages).

Magaña, S.M.; Quintana, P.; Aguilar, D.H.; Toledo, J.A.; Angeles-Chávez,  C.; Cortes, M.A.; Leon, L.; Freile-Pelegrin, Y.; Lopez, T.; Sanchez, R.M.T., (2008). Antibacterial activity of montmorillonites modified with silver. J. Mol. Catal. A: Chem., 281: 192-199 (8 pages).

Marrugo-Negrete, J.; Durango-Hernández, J.; Pinedo-Hernández, J.; Olivero-Verbel, J.; Díez, S., (2015). Phytoremediation of mercury-contaminated soils by Jatropha curcas. Chemosphere, 127: 58–63 (6 pages).

McGee, C.F.; Storey, S.; Clipson, N.; Doyle, E., (2017). Soil microbial community responses to contamination with silver, aluminum oxide and silicon dioxide nanoparticles. Ecotoxicology, (10 pages).

Mol, G.; Keesstra, S., (2012) Soil science in a changing world. Curr. Opin. Environ. Sustain., 4: 473–477 (6 pages).

Mustafa, G.; Sakata, K.; Hossain, Z.; Komatsu, S., (2015). Proteomic study on the effects of silver nanoparticles on soybean under flooding stress. J. Proteomics., 122:100-118 (19 pages).

Narang, R.A.; Bruene, A.; Altmann, T., (2000). Analysis of phosphate acquisition efficiency in different arabidopsis accessions. Plant Physiol., 124: 1786–1799 (14 pages).

Nowack, B.; Krug, H.F.; Height, M., (2011). 120 years of nanosilver history: implications for policy makers. Environ. Sci. Technol. 45: 1177-1183 (7 pages).

Pokhrel, L.R.; Dubey, B., (2013). Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Sci. Total Environ., 452-453: 321–332 (12 pages).

Poschenrieder, C.; Cabot, C.; Martos, S.; Gallego, B.; Barceló, J., (2013). Do toxic ions induce hormesis in plants? Plant Sci., 212: 15-25 (11 pages).

Prathna, T.C.; Chandrasekaran, N.; Mukherjee, A., (2011). Studies on aggregation behaviour of silver nanoparticles in aqueous matrices: Effect of surface functionalization and matrix composition. Colloids Surf. A, 390: 216- 224 (9 pages).

Priac, A.; Badot, P.M.; Crini, G., (2017). Treated wastewater phytotoxicity assessment using Lactuca sativa: Focus on germination and root elongation test parameters. C. R. Biologies, 340: 188–194 (7 pages).

Qian, H.; Peng, X.; Han, X.; Ren, J.; Sun, L.; Fu, Z., (2013). Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. J. Environ. Sci., 25(9): 1947-1955 (10 pages).

Rámila, C.D.P.; Leiva, E.D.; Bonilla, C.A.; Pastén, P.A.; Pizarro, G.E., (2015). Boron accumulation in Puccinellia frigida, an extremely tolerant and promising species for boron phytoremediation. J. Geochem. Explor., 150: 25–34 (10 pages).

Reinsch, B.C.; Levard, C.; Li, Z.; Ma, R.; Wise, A.; Gregory, K.B.; Brown Jr., G.E.; Lowry, G.V., (2012). Sulfidation of silver nanoparticles decreases Escherichia coli growth inhibition. Environ. Sci. Technol., 46: 6992-7000 (9 pages).

Rice, E.W.; Baird, R.B.; Eaton, A.D.; Clesceri, L.S., (2012). Standard methods for the examination of water and wastewater, 22nd. Ed. APHA, AWWA, WEF.

Schlich, K.; Hund-Rinke, K., (2015). Influence of soil properties on the effect of silver nanomaterials on microbial activity in five soils. Environ. Pollut., 196: 321-330 (10 pages).

Selezska, K.; Kazmierczak, M.; Müsken, M.; Garbe, J.; Schobert, M.; Häussler, S.; Wiehlmann, L.; Rohde, C.; Sikorski, J., (2012). Pseudomonas aeruginosa population structure revisited under environmental focus: impact of water quality and phage pressure. Appl. Environ. Microbiol., 14(8): 1952–1967 (16 pages).

Servin, A.D.; Morales, M.I.; Castillo-Michel, H.; Hernandez-Viezcas, J.A.; Munoz, B.; Zhao, L.; Nunez, J.E.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L., (2013). Synchrotron verification of TiO2 accumulation in cucumber fruit: a possible pathway of TiO2 nanoparticle transfer from soil into the food chain. Environ. Sci. Technol., 47: 11592-11598 (7 pages).

Shieh, Y-T.; Chen, J.Y.; Twuc, Y.K.; Chena,W-J., (2012) The effect of pH and ionic strength on the dispersion of carbon nanotubes in poly(acrylic acid) solutions. Polym. Int., 61: 554–559 (6 pages).

Singh, D.; Kumar, A., (2015).  Effects of nano silver oxide and silver ions on growth of vigna radiate. Bull. Environ. Contam. Toxicol., 95: 379-384 (6 pages).

Sun, T.Y.; BornhöFt, N.A.; HungerbüHler, K.; Nowack, B., (2016). Dynamic probabilistic modeling of environmental emissions of engineered nanomaterials. Environ. Sci. Technol., 50: 4701-4711 (11 pages).

Tariq, A.; Athar, M.; Ara, J.; Sultana, V.; Ehteshamul-Haque, S.; Ahmad, M., (2015). Global J. Environ. Sci. Manage., 1(1): 47-62 (6 pages).

Tavares, K.P.; Caloto-Oliveira, Á.; Vicentini, D. S.; Melegari, S.P.; Matias, W.G.; Barbosa, S.; Kummrow, F., (2014). Acute toxicity of copper and chromium oxide nanoparticles to Daphnia similis. Ecotoxicol. Environ. Contam., 9(1): 43-50 (8 pages).

Tomacheski, D.; Pittol, M.; Simões, D.N.; Ribeiro, V.F.; Santana, R.M.C., (2016). Effects of silver adsorbed on fumed silica, silver phosphate glass, bentonite organomodified with silver and titanium dioxide in aquatic indicator organisms. J. Environ. Sci., (10 pages).

Tsyusko, O.V.; Hardas, S.S.; Shoults-Wilson, W.A.; Starnes, C.P.; Joice, G.; Butterfield, D.A.; Unrine, J.M., (2012). Short-term molecular-level effects of silver nanoparticle exposure on the earthworm, Eisenia fetida. Environ. Pollut., 171: 249-255 (7 pages).

Ulén, B.; Etana, A., (2014). Phosphorus leaching from clay soils can be counteracted by structure liming.  Acta Agric. Scand., Sect. B., 64(5): 425–433 (10 pages).

Vannini, C.; Domingo, G.; Onelli, E.; Prinsi, B.; Marsoni, M.; Espen, L.; Bracale, M., (2013). Morphological and proteomic responses of Eruca sativa exposed to silver nanoparticles or silver nitrate. Plos One, 8(7): e68752 (8 pages).

Wakshlak, R. B-K.; Pedahzur, R.; Avnir, D., (2015). Antibacterial activity of silver-killed bacteria: the "zombies" effect. Scientific Reports, 5: 9555 (5 pages).

Wu, W.; He, Q.; Jiang, C., (2008). Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale. Res. Lett., 3: 397–415 (19 pages).

Xiu, Z-M.; Zhang, Q-B.; Puppala, H.L.; Colvin, V. L.; Alvarez, P.J.J., (2012). Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett., 12: 4271-4275 (5 pages).

Yang, Y.; Wang, J.; Xiu, Z.; Alvarez, P. J. J., (2013). Impacts of silver nanoparticles on cellular and transcriptional activity of nitrogen-cycling bacteria. Environ. Toxicol. Chem., 32(7): 1488-1494 (7 pages).

Zhai, Y.; Hunting, E.R.; Wouters, M.; Peijnenburg, W.J.; Vijver, M.G., (2016). Silver nanoparticles, ions, and shape governing soil microbial functional diversity: nano shapes micro. Front. Microbiol., 7: 1123 (9 pages).



Tomacheski, D.; Pittol, M,; Simões, D.N.; Ribeiro, V.F.; Santana, R.M.C., (2017). Impact of silver ions and silver nanoparticles on the plant growth and soil microorganisms. Global J. Environ. Sci. Manage., 3(4): 341-350 (10 pages).

Letters to Editor

GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.