1 Department of Geology, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 El Manar, Tunis, Tunisia

2 National Institute of Rural Engineering, Waters and Forest, Carthage University, 2080 BP 10 Ariana, Tunisia

3 Department of Agrochemistry and Environment, Miguel Hernández University of Elche, la Universidad SN, 03202 Elche, Alicante, Spain


BACKGROUND AND OBJECTIVES: Boron is a micronutrient of high importance, both for plant development and normal growth. The range between boron deficiency and toxicity is very narrow, which makes boron unique among the essential micronutrients. Boron adsorption is one of the most important factors determining the release and fixation of this micronutrient, though its adsorption has not been widely studied in semiarid Tunisian soils. This study aims to improve knowledge of B adsorption process in calcareous salt-affected soils in semiarid areas. It equally focuses on the type of cation (monovalent and divalent) in function of the soil texture and time of shaking. These three latter factors influence boron adsorption, which also influence the availability for plants.
METHODS: A study was carried out on boron adsorption at different shaking time intervals (1, 3, 6 and 9 hours) in two soils of different textures in the absence and  presence of different background electrolytes solutions (0.02 N CaCl2, 0.02 N MgCl2 , 0.02 N sodium chloride and 0.02 N potassium chloride.
FINDINGS: The soil-A (clay loam) adsorbed more boron than soil-B (sandy loam). Boron adsorption was the highest in Soil-A under the presence of potassium chloride, close to the mean values given when using calcium chloride. In Soil-B, it was found with calcium chloride background electrolyte. Minor boron adsorption was observed in both soils when boric acid solution was used without background electrolytes. Adsorbed boron showed significant differences with the shaking time in all treatments used with background electrolytes solutions, except for boron solution treatment without background electrolyte in both soils. As a comparison of divalent and monovalent cations, boron adsorbed content was higher with the solution containing calcium than in sodium chloride solution, due to the fact that calcium carbonate is an important boron adsorbing surface.
CONCLUSION: This study reveals that the best conditions for maximum boron adsorption are defined by calcium chloride background electrolyte in this type of soil in a determined shaking time interval of 3 hours. This causes a low rate of boron assimilated by plants, which leads to the decrease of the crop yield and the agricultural production, and subsequently hurt the Tunisian national economy.

Graphical Abstract

Boron adsorption in semiarid Mediterranean soils under the influence of background electrolytes


  • The results showed that the background electrolyte composition of the soil solution is a key factor influencing B adsorption;
  • Compared to all background electrolytes solutions, calcium chloride seems to be the cation having the most favorable behavior for B adsorption experiments;
  • The increased amount of boron results in a low rate of boron assimilated by plants, which leads to the decrease of the crop yield and the agricultural production, and subsequently hurt the Tunisian national economy.


Main Subjects

Open Access

©2022 The author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit:

Publisher’s Note

GJESM Publisher remains neutral concerning jurisdictional claims in published maps and institutional affiliations.

Citation Metrics & Captures

Google Scholar Scopus Web of Science PlumX Metrics Altmetrics Mendeley |

Current Publisher

GJESM Publisher

Letters to Editor

GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.