Department of Ecosystem and Environment Management, Indian Institute of Forest Management, Bhopal, Madhya Pradesh, 462003, India


Urbanization brings biophysical changes in the composition of the landscape. Such change has an impact on the thermal environment locally. The urban mosaic of land use and land cover is thus characteristically composed of local climate zones. The spatial variation in the land surface temperature across specific zone is studied for Bhopal city. The objective of the study was to understand how the surface temperature varies with the spatial characteristics of the landscape. The green spaces had the lowest surface temperature that reaches to about 30.5 °C in parks with dense tree cover and highest mean normalized difference vegetation index value of about 0.5. The surface temperature was 36.1 °C for built up/barren areas. The study documents the correlation that exists between surface vegetation and surface temperature across the landscape of Bhopal city. The extent of tree cover and land surface temperature exhibited a strong negative correlation. A decrease in vegetation cover and successive increase in urban built up area were found to be related with high surface temperature. This implies that land surface temperature is an effective tool and may help city planners to make appropriate strategies for improving the tree resources of the urban landscape.

Graphical Abstract


  • Spatial proximity to water bodies was effective in reducing land surface temperature
  • Green residential colonies showed similar surface temperature profile as open parks with grass lawns
  • Dense tree canopies can reduce land surface temperature by approximately 2.8 °C in the urban area


Main Subjects

Ahmed, B.; Kamruzzaman, M.; Zhu, X.; Rahman, M.S.; Choi, K., (2013). Simulating land cover changes and their impacts on land surface temperature in Dhaka, Bangladesh. Remote Sens., 5(11): 5969-5998 (30 pages).

Alavipanah, S.; Wegmann, M.; Qureshi, S.; Weng, Q.; Koellner, T., (2015). The role of vegetation in mitigating urban land surface temperatures: a case study of Munich, Germany during the warm season. Sustainability, 7(4): 4689-4706 (18 pages).

Ali-Toudert, F.; Mayer, H., (2007). Effects of asymmetry, galleries, overhanging facades and vegetation on thermal comfort in urban street canyons. Sol. Energy, 81(6): 742-754 (13 pages).

Amanollahi, J.; Abdullah, A. M.; Ramli, M. F.; Pirasteh, S., (2012). Land surface temperature assessment in semi-arid residential area of Tehran, Iran using Landsat imagery. World Appl. Sci. J., 20: 319-326 (8 pages).

Amiri, R.; Weng, Q.; Alimohammadi, A.; Alavipanah, S. K., (2009). Spatial–temporal dynamics of land surface temperature in relation to fractional vegetation cover and land use/cover in the Tabriz urban area, Iran. Remote Sens. Environ., 113(12): 2606-2617 (11 pages).

Basu, R., (2009). High ambient temperature and mortality: a review of epidemiologic studies from 2001 to 2008. Environ. Health, 8(1): 40 (13 pages).

Bhopal City Development Plan, (2006). Jawaharlal Nehru National Urban Renewal Mission (JNNURM), Bhopal Municipal Corporation, Technical Support. (197 pages).

Bian, L.; Walsh, S. J., (1993). Scale dependencies of vegetation and topography in a mountainous environment of Montana. Prof Geogr, 45(1): 1-11 (11 pages).

Bowler, D. E.; Buyung-Ali, L.; Knight, T. M.; & Pullin, A. S., (2010). Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landscape Urban Plann., 97(3): 147-155 (9 pages).

Burkart, K.; Schneider, A.; Breitner, S.; Khan, M. H.; Krämer, A.; Endlicher, W., (2011). The effect of atmospheric thermal conditions and urban thermal pollution on all-cause and cardiovascular mortality in Bangladesh. Environ. Pollut., 159(8): 2035-2043 (9 pages).

Cao, X.; Onishi, A.; Chen, J.; Imura, H., (2010). Quantifying the cool island intensity of urban parks using ASTER and IKONOS data. Landscape Urban Plann., 96(4): 224-231 (8 pages).

Chakraborty, S. D.; Kant, Y.; Mitra, D., (2015). Assessment of land surface temperature and heat fluxes over Delhi using remote sensing data. J. Environ. Manage., 148: 143-152 (10 pages).

Chen, D.; Wang, X.; Khoo, Y. B.; Thatcher, M.; Lin, B. B.; Ren, Z.; Barnett, G., (2013). Assessment of urban heat island and mitigation by urban green coverage. In Mitigating climate change (pp. 247-257). Springer Berlin Heidelberg (11 pages).

Dewan, A. M.; Corner, R. J., (2014). Impact of land use and land cover changes on urban land surface temperature. In Dhaka Megacity (pp. 219-238). Springer Netherlands (20 pages).

Dutt, A.K.; Noble, A.G.; Costa, F.J.; Thakur, R.R.; Thakur, S.K.; Sharma, H.S., (2016). Spatial Diversity and Dynamics in Resources and Urban Development. Springer Netherlands: Imprint: Springer (538 pages).

Farina, A., (2011). Exploring the relationship between land surface temperature and vegetation abundance for urban heat island mitigation in Seville, Spain. LUMA-GIS Thesis, (48 pages).

Feyisa, G. L.; Dons, K.; Meilby, H., (2014). Efficiency of parks in mitigating urban heat island effect: An example from Addis Ababa. Landscape Urban Plann., 123: 87-95 (9 pages).

Forest Survey of India, (2011). India State of Forest Report 2011. Forest Survey of India (Ministry of Environment, Forest, and Climate Change), Dehradun, India. (300 pages).

Goward, S. N., (1981). Thermal behavior of urban landscapes and the urban heat island. Physical Geography, 2(1): 19-33 (15 pages).

Grover, A.; Singh, R. B., (2015). Analysis of urban heat island (UHI) in relation to normalized difference vegetation index (NDVI): A comparative study of Delhi and Mumbai. Environments, 2(2): 125-138 (14 pages).

Henderson, J.V., (2010). Cities and development. J. Reg. Sci., 50(1): 515-540 (26 pages).

Hu, Y.; Jia, G., (2010). Influence of land use change on urban heat island derived from multi‐sensor data. International Journal of Climatology, 30(9): 1382-1395 (14 pages).

Hussain, A.; Bhalla, P.; Palria, S., (2014). Remote Sensing Based Analysis of the Role of Land Use/Land Cover on Surface Temperature and Temporal Changes in Temperature; a Case Study of Ajmer District, Rajasthan. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS), 40(8): 1447 (8 pages).

Imhoff, M. L.; Zhang, P.; Wolfe, R. E.; Bounoua, L., (2010). Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sens. Environ., 114(3): 504-513 (10 pages).

Joshi, R.; Raval, H.; Pathak, M.; Prajapati, S.; Patel, A.; Singh, V.; Kalubarme, M. H., (2015). Urban heat island characterization and isotherm mapping using geo-informatics technology in Ahmedabad city, Gujarat state, India. Int. J. Geosciences, 6(3): 274-285 (12 pages).

Lambin, E. F.; Ehrlich, D., (1996). The surface temperature-vegetation index space for land cover and land-cover change analysis. Int. J. Remote Sens., 17(3): 463-487 (25 pages).

Lemmon, P. E., (1956). A spherical densiometer for estimating forest overstory density. Forest Sci., 2(4): 314-320 (7 pages).

Li, J.; Song, C.; Cao, L.; Zhu, F.; Meng, X.; Wu, J., (2011). Impacts of landscape structure on surface urban heat islands: a case study of Shanghai, China. Remote Sens. Environ., 115(12): 3249-3263 (15 pages).

Lindley, S. J.; Handley, J. F.; Theuray, N.; Peet, E.; McEvoy, D., (2006). Adaptation strategies for climate change in the urban environment: assessing climate change related risk in UK urban areas. J. Risk Res., 9(5): 543-568 (26 pages).

Liu, H.; Weng, Q., (2008). Seasonal variations in the relationship between landscape pattern and land surface temperature in Indianapolis, USA. Environ. Monit. Assess., 144(1): 199-219 (21 pages).

Mallick, J.; Kant, Y.; Bharath, B. D., (2008). Estimation of land surface temperature over Delhi using Landsat-7 ETM+. J. Ind. Geophys. Union, 12(3): 131-140 (10 pages).

Nesarikar-Patki, P.; Raykar-Alange, P., (2013). Study of Influence of Land Cover on Urban Heat Islands in Pune Using Remote Sensing. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), ISSN: 2278-1684: 39-43 (5 pages).

Oberndorfer, E.; Lundholm, J.; Bass, B.; Coffman, R. R.; Doshi, H.; Dunnett, N.; Rowe, B., (2007). Green roofs as urban ecosystems: ecological structures, functions, and services. BioScience, 57(10): 823-833 (11 pages).

Obiakor, M. O.; Ezeonyejiaku, C. D.; Mogbo, T. C., (2012). Effects of Vegetated and Synthetic (Impervious) Surfaces on the Microclimate of Urban Area. J. Appl. Sci. Environ. Manag., 16(1): 85-94 (10 pages).

Oke, T. R., (1982). The energetic basis of the urban heat island. Q. J. R. Meteorolog. Soc., 108(455): 1-24 (24 pages).

Onishi, A.; Cao, X.; Ito, T.; Shi, F.; Imura, H., (2010). Evaluating the potential for urban heat-island mitigation by greening parking lots. Urban For. Urban Greening, 9(4): 323-332 (10 pages).

Orosa, J. A.; Costa, Á. M.; Rodríguez-Fernández, Á.; Roshan, G., (2014). Effect of climate change on outdoor thermal comfort in humid climates. J Environ Health Sci Eng, 12(1): 46. (9 pages).

Radhi, H.; Fikry, F.; Sharples, S. (2013). Impacts of urbanisation on the thermal behaviour of new built up environments: A scoping study of the urban heat island in Bahrain. Landscape Urban Plann, 113: 47-61 (15 pages).

Ranade, A., (2015). Cities of the Next Decade. DNA India, Mumbai. (1 page).

Raynolds, M. K.; Comiso, J. C.; Walker, D. A.; Verbyla, D., (2008). Relationship between satellite-derived land surface temperatures, arctic vegetation types, and NDVI. Remote Sens. Environ., 112(4): 1884-1894 (11 pages).

Ren, Z.; He, X.; Zheng, H.; Zhang, D.; Yu, X.; Shen, G.; Guo, R., (2013). Estimation of the relationship between urban park characteristics and park cool island intensity by remote sensing data and field measurement. Forests, 4(4): 868-886 (19 pages).

Rogan, J.; Ziemer, M.; Martin, D.; Ratick, S.; Cuba, N.; DeLauer, V., (2013). The impact of tree cover loss on land surface temperature: A case study of central Massachusetts using Landsat Thematic Mapper thermal data. Appl. Geogr., 45: 49-57 (9 pages).

Rosenzweig, C.; Solecki, W. D.; Cox, J.; Hodges, S.; Parshall, L.; Lynn, B.; Watson, M., (2009). Mitigating New York City's heat island: Integrating stakeholder perspectives and scientific evaluation. Bull. Am. Meteorol. Soc., 90(9): 1297-1312 (16 pages).

Rotem-Mindali, O.; Michael, Y.; Helman, D.; Lensky, I. M., (2015). The role of local land-use on the urban heat island effect of Tel Aviv as assessed from satellite remote sensing. Appl. Geogr., 56: 145-153 (9 pages).

Schiano-Phan, R.; Weber, F.; Santamouris, M., (2015). The mitigative potential of urban environments and their microclimates. Buildings, 5(3): 783-801 (19 pages).

Sharma, R.; Ghosh, A.; Joshi, P. K., (2013). Spatio-temporal footprints of urbanisation in Surat, the Diamond City of India (1990–2009). Environ. Monit. Assess., 185(4): 3313-3325 (13 pages).

Singh, R. B.; Grover, A.; Zhan, J., (2014). Inter-seasonal variations of surface temperature in the urbanized environment of Delhi using Landsat thermal data. Energies, 7(3): 1811-1828 (18 pages).

Sinha, S.; Sharma, L. K.; Nathawat, M. S., (2015). Improved land-use/land-cover classification of semi-arid deciduous forest landscape using thermal remote sensing. The Egyptian Journal of Remote Sensing and Space Science, 18(2): 217-233 (17 pages).

Smargiassi, A.; Goldberg, M. S.; Plante, C.; Fournier, M.; Baudouin, Y.; Kosatsky, T., (2009). Variation of daily warm season mortality as a function of micro-urban heat islands. J Epidemiol Community Health., 63(8): 659-664 (6 pages).

Sobrino, J. A.; Jiménez-Muñoz, J. C.; Paolini, L., (2004). Land surface temperature retrieval from LANDSAT TM 5. Remote Sens. Environ., 90(4): 434-440 (7 pages).

Stamou, A.; Patias, P., (2014). Analyzing the Relationship between urban patterns and land surface temperature using Worldview-2 and Landsat-ETM+. J. Earth Sci. Eng., 4(4): 195-202 (8 pages).

Stathopoulou, M.; Cartalis, C., (2007). Daytime urban heat islands from Landsat ETM+ and Corine land cover data: An application to major cities in Greece. Sol. Energy, 81(3): 358-368 (11 pages).

Sun, R.; Chen, L., (2012). How can urban water bodies be designed for climate adaptation?. Landscape Urban Plann., 105(1): 27-33 (7 pages).

Tajbakhsh, M.; Memarian, H.; Shahrokhi, Y., (2016). Analyzing and modeling urban sprawl and land use changes in a developing city using a CA-Markovian approach. Global J. Environ. Sci. Manage., 2(4): 397-410 (14 pages).

Takebayashi, H.; Moriyama, M., (2007). Surface heat budget on green roof and high reflection roof for mitigation of urban heat island. Build. Environ., 42(8): 2971-2979 (9 pages).

Tan, J.; Zheng, Y.; Tang, X.; Guo, C.; Li, L.; Song, G.; Chen, H., (2010). The urban heat island and its impact on heat waves and human health in Shanghai. Int. J. Biometeorol., 54(1): 75-84 (12 pages).

United Nations, (2014). Department of Economic and Social Affairs, Population Division, World Urbanization Prospects: The 2014 Revision, Highlights, 2014, (ST/ESA/SER.A/352). (32 pages)

Uysal, M.; Polat, N., (2015). An investigation of the relationship between land surface temperatures and biophysical indices retrieved from Landsat TM in Afyonkarahisar (Turkey). Tehnicki Vjesnik-Technical Gazette, 22(1): 177-182 (6 pages).

Voogt, J. A.; Oke, T. R., (2003). Thermal remote sensing of urban climates. Remote Sens. Environ., 86(3): 370-384 (15 pages).

Wang, F.; Qin, Z.; Song, C.; Tu, L.; Karnieli, A.; Zhao, S., (2015). An improved mono-window algorithm for land surface temperature retrieval from Landsat 8 thermal infrared sensor data. Remote Sens., 7(4): 4268-4289 (22 pages).

Weng, Q., (2009). Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends. ISPRS J. Photogrammetry Remote Sens., 64(4): 335-344 (10 pages).

Weng, Q.; Lu, D., (2008). A sub-pixel analysis of urbanization effect on land surface temperature and its interplay with impervious surface and vegetation coverage in Indianapolis, United States. Int. J. Appl. Earth Obs. Geoinf., 10(1): 68-83 (16 pages).

Weng, Q.; Liu, H.; Lu, D., (2007). Assessing the effects of land use and land cover patterns on thermal conditions using landscape metrics in city of Indianapolis, United States. Urban Ecosyst., 10(2): 203-219 (17 pages).

Weng, Q.; Lu, D.; Schubring, J., (2004). Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sens. Environ., 89(4): 467-483 (17 pages).

Xiao, R. B.; Ouyang, Z. Y.; Zheng, H.; Li, W. F.; Schienke, E. W.; Wang, X. K., (2007). Spatial pattern of impervious surfaces and their impacts on land surface temperature in Beijing, China. J. Environ. Sci., 19(2): 250-256 (7 pages).

Xiao, R.; Ouyang, Z.; Wang, X.; Li, W., (2002). Detecting and analyzing urban heat island patterns in Beijing, China. Research Center for Eco-Environmental Sciences. Chinese Acad. Sci., Beijing, 100085.

Yuan, F.; Bauer, M. E., (2007). Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens. Environ., 106(3): 375-386 (12 pages).

Yigitcanlar, T.; Dizdaroglu, D., (2015). Ecological approaches in planning for sustainable cities: A review of the literature. Global J. Environ. Sci. and Manage., 1(2): 159-188 (30 pages).

Zeng, Y.; Huang, W.; Zhan, F.; Zhang, H.; Liu, H., (2010). Study on the urban heat island effects and its relationship with surface biophysical characteristics using MODIS imageries. Geo. Spat. Inf. Sci., 13(1): 1-7 (7 pages).

Zeug, G.; Eckert, S., (2010). Population growth and its expression in spatial built-up patterns: The Sana’a, Yemen case study. Remote Sens., 2(4): 1014-1034 (21 pages).

Zhibin, R.; Haifeng, Z.; Xingyuan, H.; Dan, Z.; Xingyang, Y., (2015). Estimation of the Relationship Between Urban Vegetation Configuration and Land Surface Temperature with Remote Sensing. J. Indian Soc. Remote Sens., 43(1): 89-100 (12 pages).



Ali, S.B.; Patnaik, S.; Madguni, O., (2017). Microclimate land surface temperatures across urban land use/ land cover forms. Global J. Environ. Sci. Manage., 3(3): 231-242.

Letters to Editor

GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.