1 Mathematics and Natural Sciences Doctoral Program, Universitas Airlangga, Kampus C Mulyorejo, Surabaya, Indonesia

2 Department of Environmental Engineering, Universitas Pembangunan Nasional Veteran Jawa Timur, Raya Rungkut Madya, Surabaya, Indonesia

3 Department of Biology, Universitas Airlangga, Kampus C Mulyorejo, Surabaya, Indonesia

4 Department of Chemistry, Universitas Airlangga, Kampus C Mulyorejo, Surabaya, Indonesia


BACKGROUND AND OBJECTIVES: Dissolved organic matter has a fundamental role in supporting phytoplankton abundance and growth in aquatic environments. However, these organisms produce dissolved organic matter with varied quantities or characteristics depending on the nutrient availability and the species composition. Therefore, this study aims to assess the characteristic of dissolved organic matter on surface water and its correlation with phytoplankton abundance for monitoring water quality.
METHODS: The sample was obtained at four Kali Surabaya River stations for further dissolved organic matter analysis and phytoplankton species analysis. The analysis was presented through bulk parameters of total organic, ultraviolet at 254 nm wavelength (UV254), specific ultraviolet absorbance value, and fluorescence spectroscopy using excitation-emission matrices with fluorescence regional integration analysis.
FINDINGS: The results showed the bulk parameters of dissolved organic matter at all stations were significantly different, as Station 1 and 2 were higher, while 3 and 4 had a lower concentration. Furthermore, the fluorescence spectroscopy identified four components of dissolved organic matter at all stations, namely aromatic proteins-like (AP-like), humic acid-like (HA-like), soluble microbial by-products-like (SMPs-like), and fulvic acid-like (FA-like). Also, stations 1 and 2 were grouped in the high percentage FRI of humic substance (FA-like and HA-like), while 3 and 4 were classified in the high percentage FRI of non-humic substances (AP-like and SMPs-like).
CONCLUSION: The main phytoplankton species, namely Plectonema sp., Pinularia sp., Nitzchia sp., Navicula sp., had the highest abundance at Stations 1, 3, and 4, respectively. A strong correlation between dissolved organic matter analysis and phytoplankton abundance led to the usage of these methods for monitoring surface water quality.

Graphical Abstract

Dissolved organic matter and its correlation with phytoplankton abundance for monitoring surface water quality


  • Characteristic of organic matter and the phytoplankton abundance is different at each segment of surface water;
  • There is a substantial correlation among the bulk parameters, fluorescence spectroscopy of DOM and phytoplankton abundance;
  • Phytoplankton abundance combined with DOM analysis could be used to evaluate the quantity and quality of organic matter for monitoring surface water quality.


Main Subjects

Open Access

©2022 The author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit:

Publisher’s Note

GJESM Publisher remains neutral with regard to jurisdictional claims in published maps and institutional affliations.

Citation Metrics & Captures

Google Scholar Scopus Web of Science PlumX Metrics Altmetrics Mendeley |

Letters to Editor

GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.