Document Type : REVIEW PAPER

Authors

Department of Environmental Engineering, Faculty of Civil, Planning and Geo-Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

10.22034/gjesm.2021.03.07

Abstract

BACKGROUND AND OBJECTIVES: Disposable diapers have become a complicated matter due to the risk generation to the environment and human health. This study presents a description of disposable diapers characteristics and the success-proven methods used to handle this waste. In many developing countries where an inadequate waste management system occurs, the handling method selection must consider effectivity, the affordable cost, and the end product quality. Despite the diaper composting has successfully conducted in several previous studies, some issues remain for researchers to address. Thus, it requires an improvement so that the system runs effectively and sustainably. This study aimed to determine the possibility of using Cyanobacteria for enhancing the diapers composting.
METHODS: This study gains insights from previous studies using a literature review method, with the year of publication between 2007 to 2020. The focus of the investigation relates to disposable diapers composting and its optimation by cyanobacteria addition. And so as the future prospecting for application and implication to the environment and human life.
FINDINGS: Cyanobacteria ability to carry out nitrogen fixation, carbon sequestration, ubiquitous in natural habitat, highly adaptive in a wide range environmental condition, can live in the composting system, perform bioremediation, and its application as quality fertilizer, and potentially degrade plastic polymers, spread the expectation to cyanobacteria which associated with its advantages over other microorganisms to enhance the disposable diapers composting.
CONCLUSION: This study highlights the potential utilization of cyanobacteria as an opportunity for copping disposable diapers pollution. The application of compost resulted expected to provide promising-advantages to the environmental sustainability and agriculture. This paper proposes an overarching review of the feasibility in this regard.

==========================================================================================
COPYRIGHTS
©2021 The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, as long as the original authors and source are cited. No permission is required from the authors or the publishers.
==========================================================================================
 

Highlights

  • The challenges and opportunities for disposable diapers composting has overviewed, where it has successfully conducted but remain some issues to address;
  • Household-scale composting saves labour costs, transport and sorting waste, compared to centralized composting systems;
  • Co-composting is an opportunity for copping disposable diapers pollution and another organic waste;
  • Cyanobacteria inoculation is a promising outlook for enhancing disposable diapers composting.

Keywords

Main Subjects

Abatenh, E.; Gizaw, B.; Tsegaye, Z.; Tefera, G., (2018). Microbial function on climate change - a review. Environ. Pollut. Climate Change., 2(1): 1–7 (7 pages).

Al-hazmi, A.; Alomery, A.; Ait Abderrahim, L., (2019). Silymarin as a therapeutic extract for intestinal and splenic injuries induced by microcystin-LR in mice. J. King Saud Univ. Sci., 31(4): 1414–1417 (4 pages).

Al-jabari, M.; Ghyadah, R.A.; Alokely, R., (2019). Recovery of hydrogel from baby diaper wastes and its application for enhancing soil irrigation management. J. Environ. Manage., 239: 255–261 (7 pages)

Arab, G.; Razaviarani, V.; Sheng, Z.; Liu, Y.; McCartney, D., (2017). Benefits to decomposition rates when using digestate as compost co-feedstock: Part II – Focus on microbial community dynamics. Waste Manage., 68: 85–95 (11 pages).

Awasthi, S.K.;  Sarsaiya, S.; Awasthi, M.K.; Liu, T.; Zhao, J.; Kumar, S.; Zhang, Z., (2020). Changes in global trends in food waste composting: Research challenges and opportunities. Bioresour. Technol., 299: 122555 (53 pages).

Axmann, I.M.; Hertel, S.; Wiegard, A.; Dörrich, A.K.; Wilde, A., (2014). Diversity of KaiC-based timing systems in marine Cyanobacteria. Mar. Geonomics, 14: 3–16 (14 pages).

Baftehchi, L.; Samavat, S.; Parsa, M.; Soltani, M., (2007). Study the function of blue-green algae in urban garbage compost of Iran. Asian J. Plant Sci., 6(1): 187-189 (3 pages).

Baharuddin, A.S.; Kazunori, N.; Abd-Aziz, S.; Tabatabaei, M.; Rahman, N.A.A.; Hassan, M.A.; Wakisaka, M.; Sakai, K.; Shirai, Y., (2009). Characteristics and microbial succession in co-composting of oil palm empty fruit bunch and partially treated palm oil mill effluent. The Open Biotechnol. J., 3: 87–95 (9 pages).

Basu, A.M.; Punjabi, S., (2020). Participation in solid waste management: Lessons from the Advanced Locality Management (ALM) programme of Mumbai. J. Urban Manage.,  9 (1): 93-103 (11 pages).

Bernal, M.P.; Sommer, S.G.; Chadwick, D.; Qing, C.; Guoxue, L.; Michel, F.C., (2017). Current approaches and future trends in compost quality criteria for agronomic, environmental, and human health benefits. In Advances in Agronomy. Elsevier Inc., 144: 143–233 (91 pages).

Bott, L.M.; Braun, B., (2019). How do households respond to coastal hazards? A framework for accommodating strategies using the example of Semarang Bay, Indonesia. Int. J. Disaster Risk Reduct., 37: 101177 (9 pages).

Budyk, Y.; Fullana, A., (2019). Hydrothermal carbonization of disposable diapers. J. Environ. Chem. Eng., 7(5): 103341 (7 pages).

Burjus, S.J.; Alsaadawi, I.S.; Janno, F.O., (2020). Effects of some cyanophyta along with the reduced levels of chemical fertilizers on the growth and yield of wheat. Iraqi J. Sci., 61(11): 2849–2859 (11 pages).

Cao, Q.; Rediske, R.R.; Yao, L.; Xie, L., (2018). Effect of microcystins on root growth, oxidative response, and exudation of rice (Oryza sativa). Ecotoxicol. Environ. Saf., 149: 143–149 (7 pages).

Chatterjee, A.; Mandal, M.K.; Chaurasia, N., (2019). Microbial services in agro-environmental management. In New and Future Developments in Microbial Biotechnology and Bioengineering: Microbes in Soil, Crop and Environmental Sustainability. Elsevier B.V., 259-272 (14 pages).

Chia, W.Y.; Tang, D.Y.Y.; Khoo, K.S.; Lup, A.K.; Chew, K.W., (2020). Nature’s fight against plastic pollution : Algae for plastic biodegradation and bioplastics production. Environ. Sci. Ecotechnol., 4: 100065 (10 pages).

Colón, J.; Mestre-montserrat, M.; Puig-ventosa, I.; Sánchez, A., (2013). Performance of compostable baby used diapers in the composting process with the organic fraction of municipal solid waste. Waste manage., 33: 1097–1103 (7 pages).

Deviram, G.; Mathimani, T.; Anto, S.; Ahamed, T.S.; Ananth, D.A.; Pugazhendhi, A., (2020). Applications of microalgal and cyanobacterial biomass on a way to safe, cleaner and a sustainable environment. J. Cleaner Prod., 253: 119770 (74 pages).

Dey, S.; Purdon, M.; Kirsch, T.; Helbich, H.; Kerr, K.; Li, L.; Zhou, S., (2016). Exposure Factor considerations for safety evaluation of modern disposable diapers. Regul. Toxicol. Pharm., 81: 183–193 (11 pages).

Dhokhikah, Y.; Trihadiningrum, Y.; Sunaryo, S., (2015). Community participation in household solid waste reduction in Surabaya, Indonesia. Resour. Conserv. Recycl., 102: 153–162 (10 pages).

Dreher, T.W.; Collart, L.P.; Mueller, R.S.; Halsey, K.H.; Bildfell, R.J.; Schreder, P.; Sobhakumari, A.; Ferry, R., (2019). Anabaena/Dolichospermum as the source of lethal microcystin levels responsible for a large cattle toxicosis event. Toxic. X., 1: 100003 (7 pages).

Dukare, A.S.; Prasanna, R.; Dubey, S.C.; Nain, L.; Chaudhary, V.; Singh, R.; Saxena, A.K., (2011). Evaluating novel microbe amended composts as biocontrol agents in tomato. Crop Prot., 30(4): 436–442 (7 pages).

Edana, (2008). Sustainability report 2007-2008 absorbent hygiene products (72 pages).

Eletr, W.M.T.; Ghazal, F.M.; Mahmoud, A.A.; Yossef, G.H., (2013). Responses of Wheat – Rice Cropping System to Cyanobacteria Inoculation and Different Soil Conditioners Sources under Saline Soil. Nat. Sci., 11(10): 118–129 (12 pages).

El Gamal, A.A., (2010). Biological importance of marine algae. Saudi Pharma. J., 18(1): 1–25 (25 pages).

El-Gamal, M.A.H., (2011). Impact of algal addition to mature compost as affected by different moisture levels. Aust. J. Basic Appl. Sci., 5(9): 729–737 (10 pages).

Espinosa-Valdemar, R.M.; Turpin-Marion, S.; Delfín-Alcalá, I.; Vázquez-Morillas, A., (2011). Disposable diapers biodegradation by the fungus Pleurotus ostreatus. Waste Manage., 31: 1683–1688 (6 pages).

Espinosa-Valdemar, R.M.; Sotelo-Navarro, P.X.; Quecholac-Pina, X.; García-rivera, M.A.; Beltrán-villavicencio, M.; Ojeda-benítez, S.; Vázquez-Morillas, A., (2014). Biological recycling of used baby diapers in a small-scale composting system. Resour. Conserv. Recycl., 87: 153–157 (5 pages).

Farrag, D.K.; Mehesen, A.A.; Kasem, M.H.; El-Dein, O.A.A, (2017). Impact of cyanobacteria filtrate, compost tea and different rates of nitrogen fertilizer on growth, fruit yield and quality of cantaloupe plants. Microbiol. Res. J. Int., 18(1): 1–10 (11 pages).

Faverial, J.; Sierra, J., (2014). Home composting of household biodegradable wastes under the tropical conditions of Guadeloupe ( French Antilles ). J. Cleaner Prod., 83: 238–244 (7 pages).

Flores-Felix, J.D.; Menendez, E.; Rivas, R.; Vela´zquez, M.E., (2019). Future perspective in organic farming fertilization : management and product. In Organic Farming : Global Perspectives and Methods. Elsevier Inc., 269-315 (47 pages).

Fontanillo, M.; Köhn, M., (2018). Microcystins: Synthesis and structure–activity relationship studies toward PP1 and PP2A. Bioorg. Med. Chem., 26(6): 1118–1126 (9 pages).

Garg, T.; Hamilton, S.E.; Hochard, J.P.; Kresch, E.P.; Talbot, J., (2018). ( Not so ) gently down the stream : River pollution and health in. J. Environ. Econ. Manage., 92: 35–53 (19 pages).

Guo, X.X.; Liu, H.T.; Wu, S.B., (2019). Humic substances developed during organic waste composting: Formation mechanisms, structural properties, and agronomic functions. Sci. Total Environ., 662: 501–510 (10 pages).

Gupta, V.; Ratha, S.K.; Sood, A.; Chaudhary, V.; Prasanna, R., (2013). New insights into the biodiversity and applications of cyanobacteria ( blue-green algae ) — Prospects and challenges. Algal Res., 2(2): 79–97 (19 pages).

Handayani, W.; Fisher, M.R.; Rudiarto, I.; Setyono, J.S.; Foley, D., (2019). Operationalizing resilience: A content analysis of flood disaster planning in two coastal cities in Central Java, Indonesia. Int. J. Disaster Risk Reduc., 35: 101073 (11 pages).

Han, S.; Li, J.; Zhou, Q.; Liu, G.; Wang, T., (2019). Harmless disposal and resource utilization of wastes from the lake in China : Dewatering , composting and safety evaluation of fertilizer. Algal Res., 43: 101623 (8 pages).

Han, W.; Clarke, W.; Pratt, S., (2014). Composting of waste algae : A review. Waste Manage., 34(7): 1148–1155 (8 pages).

Harindintwali, J.D.; Zhou, J.; Yu, X., (2020). Lignocellulosic crop residue composting by cellulolytic nitrogen-fixing bacteria: A novel tool for environmental sustainability. Sci. Total Environ., 715: 136912 (13 pages).

Hashemi, S.; Han, M., (2018). Optimizing source-separated feces degradation and fertility using nitrifying microorganisms. J. Environ. Manage., 206: 540–546 (7 pages).

He, X.; Liu, Y.L.; Conklin, A.; Westrick, J.; Weavers, L.K.; Dionysiou, D.D.; Lenhart, J.J.; Mouser, P.J.; Szlag, D.; Walker, H.W., (2016). Toxic cyanobacteria and drinking water: Impacts, detection, and treatment. Harmful Algae, 54: 174–193 (20 pages).

Hegazi, A.Z.; Khattab, E.A.; Shehata, H.S.; Mostafa, S.S.M., (2015). Application efficiency of spent mushroom compost extract, cyanobacteria and bacteria on green fruit and seed yield of squash under drip irrigation system. Middle Est. J. Agric. Res., 4(4): 887–898 (12 pages).

Herrera, N.A.; Echeverri, L.F.; Ferrão-Filho, A.S., (2015). Effects of phytoplankton extracts containing the toxin microcystin-LR on the survival and reproduction of cladocerans. Toxicon, 95: 38–45 (8 pages).

Herrera, N.; Herrera, C.; Ortíz, I.; Orozco, L.; Robledo, S.; Agudelo, D.; Echeverri, F., (2018). Genotoxicity and cytotoxicity of three microcystin-LR containing cyanobacterial samples from Antioquia, Colombia. Toxicon, 154: 50–59 (10 pages).

Hoffmann, B.S.; Morais, J.d.S.; Escola, P.F.T., (2020). Life cycle assessment of innovative circular business models for modern cloth diapers. J. Cleaner Prod., 249: 119364 (16 pages).

Huang, W.; Ngo, H.; Lin, C.; Vu, C.; Kaewlaoyoong, A.; Boonsong, T.; Tran, H.; Bui, X.; Vo, T.; Chen, J., (2019). Aerobic co-composting degradation of highly PCDD / F-contaminated field soil . A study of bacterial community. Sci. Total Environ., 660: 595–602 (8 pages).

Jaiswal, S.; Sharma, B.; Shukla, P., (2019). Integrated approaches in microbial degradation of plastics. Environ. Technol. Innovation, 17: 100567 (55 pages).

Janssen, E.M.L., (2019). Cyanobacterial peptides beyond microcystins – A review on co-occurrence, toxicity, and challenges for risk assessment. Water Res., 151: 488–499 (12 pages).

Kerdsuwan, S.; Laohalidanond, K.; Jangsawang, W., (2015). Sustainable development and eco-friendly waste disposal technology for the local community. In Energy Procedia, 79: 119-124 (6 pages).

Kholssi, R.; Marks, E.A.N.; Montero, O.; Maté, A.P.; Debdoubi, A.; Rad, C., (2017). The growth of filamentous microalgae is increased on biochar solid supports. Biocatal. Agric. Biotechnol., 13: 182-185 (11 pages).

Khoo, S.C.; Phang, X.Y.; Ng, C.M.; Lim, K.L.; Lam, S.S.; Ma, N.L, (2019). Recent technologies for treatment and recycling of used disposable baby diapers. Process Saf. Environ. Prot., 123: 116–129 (14 pages).

Kim, K.; Cho, H., (2017). Pilot trial on separation conditions for diaper recycling. Waste Manage., 67: 11–19 (9 pages).

Kosemund, K.; Schlatter, H.; Ochsenhirt, J.L.; Krause, E.L.; Marsman, D.S.; Erasala, G.N., (2009). Safety evaluation of superabsorbent baby diapers. Regul. Toxicol. Pharm., 53(2): 81–89 (9 pages).

Koyama, M.; Nagao, N.; Syukri, F.; Rahim, A.A.; Toda, T.; Tran, Q.N.M.; Nakasaki, K., (2020). Ammonia recovery and microbial community succession during thermophilic composting of shrimp pond sludge at different sludge properties. J. Cleaner Prod., 251: 119718 (9 pages).

Kumar, R.V.; Kanna, G.R.; Elumalai, S., (2017). Biodegradation of Polyethylene by Green Photosynthetic Microalgae. J. Biorem. Biodegrad., 8(1): 1–8 (8 pages).

Lam, S.S.; Wan Mahari, W.A.; Ma, N.L.; Azwar, E.; Kwon, E.E.; Peng, W.; Chong, C.T.; Liu, Z.; Park, Y., (2019). Microwave pyrolysis valorization of used baby diaper. Chemosphere., 230: 294–302 (9 pages).

Lavigne, F.; Wassmer, P.; Gomez, C.; Davies, T.A.; Hadmoko, D.S.; Iskandarsyah, T.Y.W.M.; Gaillard, J.C.; Fort, M.; Texier, P.; Heng, M.B.; Pratomo, I., (2014). The 21 February 2005, catastrophic waste avalanche at Leuwigajah dumpsite, Bandung, Indonesia. Geoenviron. Disasters., 1 : 10 (12 pages).

Lestari, P.; Trihadiningrum, Y., (2019). The impact of improper solid waste management to plastic pollution in Indonesian coast and marine environment. Mar. Pollut. Bull., 149 : 110505 (9 pages).

Li, H.; Zhao, Q.; Huang, H., (2019). Current states and challenges of salt-affected soil remediation by cyanobacteria. Sci. Total Environ., 669: 258–272 (15 pages).

Lin, L.; Xu, F.; Ge, X.; Li, Y., (2018). Improving the sustainability of organic waste management practices in the food-energy-water nexus: A comparative review of anaerobic digestion and composting. Renewable Sustainable Energy Rev., 89: 151–167 (17 pages).

Lin, L.; Xu, F.; Ge, X.;  Li, Y., (2019). Biological treatment of organic materials for energy and nutrients production—Anaerobic digestion and composting. In Advances in Bioenergy. Elsevier Inc.,  4: 121-181 (61 pages).

Lithner, D.; Larsson, A.; Dave, G., (2011). Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Sci. Total Environ., 409(18): 3309–3324 (16 pages).

Lone, Y.; Koiri, R.K.; Bhide, M., (2015). An overview of the toxic effect of potential human carcinogen Microcystin-LR on testis. Toxicol. Rep., 2: 289–296 (8 pages).

Maamari, O.; Mouaffak, L.; Kamel, R.; Brandam, C.; Lteif, R.; Salameh, D., (2016). Comparison of steam sterilization conditions efficiency in the treatment of Infectious Health Care Waste. Waste Manage., 49: 462–468 (7 pages).

Malyan, S.K.; Bhatia, A.; Kumar, A.; Gupta, K.D.; Singh, R.; Kumar, S.S.; Tomer, R.; Kumar, O.; Jain, N., (2016). Methane production, oxidation and mitigation : A mechanistic understanding and comprehensive evaluation of influencing factors. Sci. Total Environ., 572: 874-896 (23 pages).

Manjunath, M.; Kanchan, A.; Ranjan, K.; Venkatachalam, S.; Prasanna, R.; Ramakrishnan, B.; Hossain, F.; Nain, L.; Shivay, Y.S.; Rai, A.B.; Singh, B., (2016). Beneficial cyanobacteria and eubacteria synergistically enhance bioavailability of soil nutrients and yield of okra. Heliyon, 2(2): e00066 (28 pages).

Martins, N.D.; Yunes, J.S.; Monteiro, D.A.; Rantin, F.T.; Kalinin, A. L., (2017). Microcystin-LR leads to oxidative damage and alterations in antioxidant defense system in liver and gills of Brycon amazonicus (SPIX & AGASSIZ, 1829). Toxicon, 139: 109–116 (8 pages).

Maulini-Duran, C.; Artola, A.; Font, X.; Sánchez, A., (2014). Gaseous emissions in municipal wastes composting: Effect of the bulking agent. Bioresour. Technol., 172: 260–268 (9 pages).

Menamo, M.; Wolde, Z.; (2015). Effect of cyanobacteria application as biofertilizer on growth, yield and yield components of romaine lettuce (Lactuca sativa L.) on soils of Ethiopia. Am. Scientific Res. J. Eng., Technol. Sci., 4(1), 50–58 (9 pages).

Mendoza, J.M.F.; Aponte, F.D.; Gualtieri, D.; Azapagic, A. (2019). Disposable baby diapers : Life cycle costs , eco-efficiency and circular economy. J. Cleaner Prod., 211: 455–467 (13 pages).

Moharir, R.V.; Kumar, S., (2018). Challenges associated with plastic waste disposal and allied microbial routes for its effective degradation: A comprehensive review. J. Cleaner Prod., 208: 65-76 (49 pages).

Naik, K.; Mishra, S.; Srichandan, H.; Singh, P.K.; Sarangi, P.K., (2019). Plant growth promoting microbes: Potential link to sustainable agriculture and environment. Biocatal. Agric. Biotechnol. 21: 101326 (12 pages).

Noreña-Caro, D.; Benton, M.G., (2018). Cyanobacteria as photoautotrophic biofactories of high-value chemicals. J. CO2 Util., 28: 335–366 (32 pages).

Onwosi, C.O.; Igbokwe, V.C.; Odimba, J.N.; Eke, I.E.; Nwankwoala, M.O.; Iroh, I.N.; Ezeogu, L.I., (2017). Composting technology in waste stabilization : On the methods, challenges and future prospects. J. Environ. Manage., 190: 140–157 (18 pages).

Palaniveloo, K.; , Amran, M.A.; Norhashim, N.A.; Fauzi, N.M.; Peng-Hui, F.; Hui-Wen, L.; Kai-Lin, Y.; Jiale, L.; Chian-Yee, M.G.; Jing-Yi, L.; Gunasekaran, B.; Razak, S.A.; (2020). Food Waste Composting and Microbial Community Structure Profiling. Processes, 8: 723 (30 pages).

Pandey, S.N.; Verma, I.; Kumar, M., (2020). Cyanobacteria: potential source of biofertilizer and synthesizer of metallic nanoparticles. In Advances in Cyanobacterial Biology. Elsevier Inc., 351-367 (17 pages).

Patel, A.; Matsakas, L.; Rova, U.; Christakopoulos, P., (2019). A perspective on biotechnological applications of thermophilic microalgae and cyanobacteria. Bioresour. Technol., 278: 424–434 (11 pages).

Pawar, R.G.; Suryawanshi, D.S., (2016). Effect of Composting on growth of blue green algae. Int. J. Sci. Res., 7(6): 278-280 (3 pages).

Prasanna, R.; Babu, S.; Bidyarani, N.; Kumar, A.; Triveni, S.; Monga, D.; Mukherjee, A.K.; Kranthi, S.; Gokte-Narkhedkar, N.; Adak, A.; Yadav, K.; Nain, L.; Saxena, A. K., (2015). Prospecting cyanobacteria-fortified composts as plant growth promoting and biocontrol agents in cotton. Exp. Agric., 51(1): 42–65 (24 pages).

Prasanna, R.; Kanchan, A.; Ramakrishnan, B.; Ranjan, K.; Venkatachalam, S.; Hossain, F.; Shivay, Y. S.; Krishnan, P.; Nain, L., (2016). Cyanobacteria-based bioinoculants influence growth and yields by modulating the microbial communities favourably in the rhizospheres of maize hybrids. Eur. J. Soil Biol., 75: 15–23 (9 pages).

Prasanna, R.; Gupta, H.; Yadav, V.K.; Gupta, K.; Buddhadeo, R.; Gogoi, R.; Bharti, A.; Mahawar, H.; Nain, L., (2020). Prospecting the promise of cyanobacterial formulations developed using soil-less substrates as carriers. Environ. Technol. Innovation, 18: 100652 (12 pages).

Preece, E.P.; Hardy, F.J.; Moore, B.C.; Bryan, M., (2017). A review of microcystin detections in Estuarine and Marine waters: Environmental implications and human health risk. Harmful Algae, 61: 31–45 (15 pages).

Presiden Republik Indonesia, (2017). Kebijakan dan Strategi Nasional Pengelolaan Sampah Rumah Tangga dan Sampah Sejenis Sampah Rumah Tangga. Peraturan Presiden Nomor 97, Jakarta.

Rashad, S.; El-Hassanin, A.S.; Mostafa, S.S.M.; El-Chaghaby, G.A., (2019). Cyanobacteria cultivation using olive milling wastewater for bio-fertilization of celery plant. Global J. Environ. Sci. Manage., 5(2): 167–174 (8 pages).

Rastogi, M.; Nandal, M.; Khosla, B., (2020). Microbes as vital additives for solid waste composting. Heliyon, 6: e03343 (11 pages).

Renuka, N.; Guldhe, A.; Prasanna, R.; Singh, P.; Bux, F., (2018). Microalgae as multi-functional options in modern agriculture : current trends , prospects and challenges. Biotechnol. Adv., 36(4): 1255–1273 (19 pages).

Rochmah, W.N.; Mangkoedihardjo, S., (2020). Toxicity Effects of Organic Substances on Nitrification Efficiency. IOP Conf. Ser. Earth Environ. Sci., 506: 012011 (8 pages).

Rudnik, E., (2019a). Definitions, structures and methods of preparation. In Compostable Polymer Materials. Elsevier Ltd., 2: 11-48 (38 pages).

Rudnik, E., (2019b). Composting methods and legislation. In Compostable Polymer Materials. Elsevier Ltd., 2: 127-161 (35 pages).

Sadeghi, S.H.; Kheirfam, H.; Darki, B.Z., (2020a). Controlling runoff generation and soil loss from field experimental plots through inoculating cyanobacteria. J. Hydrol., 585: 124814 (14 pages).

Sadeghi, S.H.; Satri, M.S.; Kheirfam, H.; Darki, B.Z., (2020b). Runoff and soil loss from small plots of erosion-prone marl soil inoculated with bacteria and cyanobacteria under real conditions. Eur. J. Soil Biol., 101: 103214 (11 pages).

Said, M.I., (2020). Livestock waste and its role in the composting process: A review. IOP Conf. Ser. Earth Environ. Sci., 492: 012087 (10 pages).

Samudro, H.; Mangkoedihardjo, S., (2020).  Greening the environment in living a new lifestyle in the COVID-19 era. Eurasia J Biosci., 14: 3285-3290 (6 pages).

Sarmah, P.; Rout, J., (2020). Role of algae and cyanobacteria in bioremediation: prospects in polyethylene biodegradation. In Advances in Cyanobacterial Biology. Elsevier Inc., 333-349 (17 pages).

Senecal, J.; Nordin, A.; Simha, P.; Vinnerås, B., (2018). Hygiene aspect of treating human urine by alkaline dehydration. Water Res., 144: 474–481 (8 pages).

Shaaban, A.F., (2007). Process engineering design of pathological waste incinerator with an integrated combustion gases treatment unit. J. Hazardous Mater., 145(1-2): 195–202 (8 pages).

Shankar, J.; Strong, P.J., (2016). Biologically derived fertilizer : A multifaceted bio-tool in methane mitigation. Ecotoxicol. Environ. Saf., 124: 267–276 (10 pages).

Simamora, M.S.; Pandebesie, E., (2019). Co-composting sampah popok sekali pakai (diapers) dengan sampah sayur menggunakan aerob komposter. In Undergraduate thesis, Institut Teknologi Sepuluh Nopember, 1-167 (167 pages).

Subashchandrabose, S.R.; Ramakrishnan, B.; Megharaj, M.; Venkateswarlu, K.; Naidu, R., (2013). Mixotrophic cyanobacteria and microalgae as distinctive biological agents for organic pollutant degradation. Environ. Int., 51: 59–72 (14 pages).

Takahashi, T.; Umehara, A.; Tsutsumi, H., (2014). Diffusion of microcystins (cyanobacteria hepatotoxins) from the reservoir of Isahaya Bay, Japan, into the marine and surrounding ecosystems as a result of large-scale drainage. Mar. Pollut. Bull., 89: 250–258 (9 pages).

Torrijos, M.; Sousbie, P.;  Rouez, M.; Lemunier, M.;  Lessard, Y.; Galtier, L.; Simao, A.; Steyer, J.P., (2014). Treatment of the biodegradable fraction of used disposable diapers by co-digestion with waste activated sludge. Waste Manage., 34(3): 669-675 (7 pages).

Tucho, G.T.; Okoth, T., (2020). Evaluation of neglected bio-wastes potential with food-energy- sanitation nexus. J. Cleaner Prod., 242: 118547 (9 pages).

Tumuhairwe, J.B.; Tenywa, J.S., (2018). Bacterial community changes during composting of municipal crop waste using low technology methods as revealed by 16S rRNA. Afr. J. Environ. Sci. Technol., 12(6): 209–221 (12 pages).

Vaikarar, K.; Rajmohan, S.; Ramya, C.; Viswanathan, M.R.; Varjani, S., (2019). Plastic pollutants : effective waste management for pollution control and abatement. Curr. Opin. Environ. Sci. Health. 12: 72–84 (13 pages).

Verma, R.L.; Borongan, G.; Memon, M.,  (2016). Municipal Solid Waste Management in Ho Chi Minh City, Viet Nam, Current Practices and Future Recommendation. Procedia Environ. Sci., 35: 127 – 139 (13 pages).

Wang, S.; Wang, J.; Sun, P.; Xu, L.; Okoye, P.U.; Li, S.; Zhang, L.; Guo, A.; Zhang, J.; Zhang, A., (2019). Disposable baby diapers waste derived catalyst for synthesizing glycerol carbonate by the transesteri fication of glycerol with dimethyl carbonate. J. Cleaner Prod., 211: 330–341 (12 pages).

Wei, Z.; Xi, B.; Zhao, Y.; Wang, S.; Liu, H.; Jiang, Y., (2007). Effect of inoculating microbes in municipal solid waste composting on characteristics of humic acid. Chemosphere., 68: 368–374 (7 pages).

Wiśniewska, K.; Lewandowska, A.U.; Śliwińska-Wilczewska, S., (2019). The importance of cyanobacteria and microalgae present in aerosols to human health and the environment – Review study. Environ. Int., 131: 104964 (11 pages).

Wu, D.; Wei, Z.; Qu, F.; Mohamed, T. A.; Zhu, L.; Zhao, Y.; Jia, L.; Zhao, R.; Liu, L.; Li, P., (2020). Effect of Fenton pretreatment combined with bacteria inoculation on humic substances formation during lignocellulosic biomass composting derived from rice straw. Bioresour. Technol., 303: 122849 (9 pages).

Xu, J.; Jiang, Z.; Li, M.; Li, Q., (2019). A compost-derived thermophilic microbial consortium enhances the humi fi cation process and alters the microbial diversity during composting. J. Environ. Manage., 243: 240–249 (10 pages). 

Yadav, S., Rai, R., Shrivastava, A.K.; Singh, P.K.; Sen, S.; Chatterjee, A.;  Rai, A.S.; Singh, S.; Rai, L.C., (2018). Cyanobacterial Biodiversity and Biotechnology : A Promising Approach for Crop Improvement. In New and Future Developments in Microbial Biotechnology and Bioengineering: Crop Improvement Through Microbial Biotechnology. Elsevier B.V., 195-219 (25 pages).

Yuan, J.; Ma, J.; Sun, Y.; Zhou, T.; Zhao, Y.; Yu, F., (2020). Microbial degradation and other environmental aspects of microplastics / plastics. Sci. Total Environ., 715: 136968 (9 pages).

Zulfikar; Aditama, W.; Nasrullah, (2019). Decomposition process of disposable baby diapers in organic waste with Takakura Method. Int. J. Sci. Healthcare Res., 4(1): 337–344 (8 pages).

Zhou, X.; Yang, J.; Xu, S.; Wang, J.; Zhou, Q.; Li, Y.; Tong, X., (2020). Rapid in-situ composting of household food waste. Process Saf. Environ. Prot., 141: 259-266 (8 pages).

Letters to Editor

GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.

CAPTCHA Image