Document Type : REVIEW PAPER

Authors

1 Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, University of Ruhuna, Hapugala, Galle 80000, Sri Lanka

2 Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama-shi, Saitama 338-8570, Japan

3 Department of Mechanical Engineering, Shibaura Institute of Technology, 3‑7‑5 Toyosu, Koto City, Tokyo 135‑8548, Japan

10.22034/gjesm.2021.03.08

Abstract

Growth of plants, apart from being complex and highly dynamic, is directly dependent on the environmental conditions, particularly the quality of soil for terrestrial plants and the water quality for aquatic plants. Presence of microplastics in the environment may affect the plant growth in numerous ways depending on the contents of the growing medium. However, increasing presence of microplastics at an alarming rate due to its pervasive usage and mismanagement of plastics have led to significant environmental problems. Several research studies have been conducted as well as reviewed to investigate the toxic effects of microplastics on aquatic systems, but studies that investigate the toxic effect of microplastics on the terrestrial systems are limited. Hence, in this review the individual and the combined effects of microplastics on the growth of plants and seed germination in both aquatic and terrestrial ecosystems are concisely discussed. At the beginning accumulation of microplastics on aquatic and terrestrial ecosystem is discussed and the reasonable solutions are highlighted that can mitigate the effects from the widespread increase of the plastic debris. Thereafter, the individual and combined effect of microplastics on seed germination and plant growth is reviewed separately while summarizing the important aspects and future perspectives. This review will provide an insight into the existing gap in the current research works and thus could offer possible implications on the effect of microplastics on plant growth and seed germination in aquatic and terrestrial ecosystem.
 
==========================================================================================
COPYRIGHTS
©2021 The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, as long as the original authors and source are cited. No permission is required from the authors or the publishers.
==========================================================================================
 

Graphical Abstract

Microplastics on the growth of plants and seed germination in aquatic and terrestrial ecosystems

Highlights

  • The effect of microplastics on plant growth and seed germination has dose-dependent and size-dependent responses;
  • Microplastics are accumulated near the seed coat and root hair inhibiting imbibition, causing a reduction of the seed germination rate and plant growth;
  • Microplastics are serve as a vector for chemical transportation and they are able to adsorb heavy metal and chemicals increasing the synergic effect;
  • Plants can uptake nano plastics causing genotoxic and cytological effects.

Keywords

Main Subjects

Accinelli, C.; Abbas, H.K.; Little, N.S.; Kotowicz, J.K.; Mencarelli, M.; Shier, W.T., (2016). A liquid bioplastic formulation for film coating of agronomic seeds. Crop Prot., 89: 123–128 (6 pages).

Accinelli, C.; Abbas, H.K.; Shier, W.T.; Vicari, A.; Little, N.S.; Aloise, M.R.; Giacomini, S., (2019). Degradation of microplastic seed film-coating fragments in soil. Chemosphere, 226: 645–650 (6 pages).

Andrady, A.L., (2011). Microplastics in the marine environment. Mar. Pollut. Bull., 62(8): 1596–1605 (10 pages).

Bakir, A.; Rowland, S.J.; Thompson, R.C., (2012). Competitive sorption of persistent organic pollutants onto microplastics in the marine environment. Mar. Pollut. Bull., 64(12): 2782–2789 (8 pages).

Bakir, A.; Rowland, S.J.; Thompson, R.C., (2014). Transport of persistent organic pollutants by microplastics in estuarine conditions. Estuarine Coastal Shelf Sci., 140: 14–21 (8 pages).

Ballent, A.; Pando, S.; Purser, A.; Juliano, M.F.; Thomsen, L., (2013). Modelled transport of benthic marine microplastic pollution in the Nazaré Canyon. Biogeosci., 10(12): 7957–7970 (14 pages).

Bandmann, V.; Müller, J.D.; Köhler, T.; Homann, U., (2012). Uptake of fluorescent nano beads into BY2-cells involves clathrin-dependent and clathrin-independent endocytosis. FEBS Lett., 586(20): 3626–3632 (7 pages).

Barnes, D.K.A.; Milner, P., (2005). Drifting plastic and its consequences for sessile organism dispersal in the Atlantic Ocean. Mar. Biol., 146(4): 815–825 (11 pages).

Bergami, E.; Pugnalini, S.; Vannuccini, M.L.; Manfra, L.; Faleri, C.; Savorelli, F.; Dawson, K.A.; Corsi, I., (2017). Long-term toxicity of surface-charged polystyrene nanoplastics to marine planktonic species Dunaliella tertiolecta and Artemia franciscana. Aquat. Toxicol., 189(June): 159–169 (11 pages).

Besseling, E.; Wang, B.; Lürling, M.; Koelmans, A.A., (2014). Nanoplastic affects growth of S. obliquus and reproduction of D. magna. Environ. Sci. Technol., 48(20): 12336–12343 (8 pages).

Besseling, E.; Wegner, A.; Foekema, E.M.; Van Den Heuvel-Greve, M.J.; Koelmans, A.A., (2013). Effects of microplastic on fitness and PCB bioaccumulation by the lugworm Arenicola marina (L.). Environ. Sci. Technol., 47(1): 593–600 (8 pages).

Bhattacharya, P.; Lin, S.; Turner, J.P.; Ke, P.C., (2010). Physical adsorption of charged plastic nanoparticles affects algal photosynthesis. J. Phys. Chem. C., 114(39): 16556–16561 (6 pages).

Bläsing, M.; Amelung, W., (2018). Plastics in soil: Analytical methods and possible sources. Sci. Total Environ., 612: 422–435 (14 pages).

Boots, B.; Russell, C.W.; Green, D.S., (2019). Effects of microplastics in soil ecosystems: Above and below ground. Environ. Sci. Technol., 53(19): 11496–11506 (11 pages).

Bosker, T.; Bouwman, L.J.; Brun, N.R.; Behrens, P.; Vijver, M.G., (2019). Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum. Chemosphere, 226: 774–781 (8 pages).

Boucher, J.; Friot, D., (2017). Primary microplastics in the oceans: A global evaluation of sources. In Primary microplastics in the oceans: A global evaluation of sources, 1-46 (46 pages).

Bråte, I.L.N.; Hurley, R.; Iversen, K.; Beyer, J.; Thomas, K.V.; Steindal, C.C.; Green, N.W.; Olsen, M.; Lusher, A., (2018). Mytilus spp. as sentinels for monitoring microplastic pollution in Norwegian coastal waters: A qualitative and quantitative study. Environ. Pollut., 243: 383–393 (11 pages).

Brennecke, D.; Duarte, B.; Paiva, F.; Caçador, I.; Canning-Clode, J., (2016). Microplastics as vector for heavy metal contamination from the marine environment. Estuarine Coastal Shelf Sci., 178: 189–195 (7 pages).

Browne, M.A.; Dissanayake, A.; Galloway, T.S.; Lowe, D.M.; Thompson, R.C., (2008). Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environ. Sci. Technol., 42(13): 5026–5031 (6 pages).

Browne, M.A.; Crump, P.; Niven, S.J.; Teuten, E.; Tonkin, A.; Galloway, T.; Thompson, R., (2011). Accumulation of microplastic on shorelines woldwide: Sources and sinks. Environ. Sci. Technol., 45(21): 9175–9179 (5 pages).

Capozzi, F.; Carotenuto, R.; Giordano, S.; Spagnuolo, V., (2018). Evidence on the effectiveness of mosses for biomonitoring of microplastics in fresh water environment. Chemosphere, 205: 1–7 (7 pages).

Castañeda, R.A.; Avlijas, S.; Anouk Simard, M.; Ricciardi, A., (2014). Microplastic pollution in st. lawrence river sediments. Can. J. Fish. Aquat.Sci., 71(12): 1767–1771 (5 pages).

Chae, Y.; An, Y.J., (2018). Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review. Environ. Pollut., 240: 387–395 (9 pages).

 Chen, G.; Feng, Q.; Wang, J., (2020). Mini-review of microplastics in the atmosphere and their risks to humans. Sci. Total Environ., 703: 135504: 1-6 (6 pages).

Chen, Q.; Zhang, H.; Allgeier, A.; Zhou, Q.; Ouellet, J.D.; Crawford, S.E.; Luo, Y.; Yang, Y.; Shi, H.; Hollert, H., (2019). Marine microplastics bound dioxin-like chemicals: Model explanation and risk assessment. J. Hazard. Mater., 364(August 2018): 82–90 (9 pages).

Cheung, P.K.; Fok, L., (2017). Characterisation of plastic microbeads in facial scrubs and their estimated emissions in Mainland China. Water Res., 122: 53–61 (9 pages).

Claessens, M.; Meester, S.De; Landuyt, L.Van, Clerck, K.De, Janssen, C.R., (2011). Occurrence and distribution of microplastics in marine sediments along the Belgian coast. Mar. Pollut. Bull., 62(10): 2199–2204 (6 pages).

Claessens, M.; Van Cauwenberghe, L.; Vandegehuchte, M.B.; Janssen, C.R., (2013). New techniques for the detection of microplastics in sediments and field collected organisms. Mar. Pollut. Bull., 70(1–2): 227–233 (7 pages).

Cole, M.; Lindeque, P.; Fileman, E.; Halsband, C.; Goodhead, R.; Moger, J.; Galloway, T.S., (2013). Microplastic ingestion by zooplankton. Environ. Sci. Technol., 47(12): 6646–6655 (10 pages).

Cole, M.; Lindeque, P.; Halsband, C.; Galloway, T.S., (2011). Microplastics as contaminants in the marine environment: A review. Mar. Pollut. Bull., 62(12): 2588–2597 (10 pages).

Conti, G.O.; Ferrante, M.; Banni, M.; Favara, C.; Nicolosi, I.; Cristaldi, A.; Fiore, M.; Zuccarello, P., (2020). Micro- and nano-plastics in edible fruit and vegetables. The first diet risks assessment for the general population. Environ. Res., 187: 1-7 (7 pages).

Cox, K.D.; Covernton, G.A.; Davies, H.L.; Dower, J.F.; Juanes, F.; Dudas, S.E., (2019). Human Consumption of Microplastics [Research-article]. Environ. Sci. Technol., 53(12): 7068–7074 (7 pages).

Davarpanah, E.; Guilhermino, L., (2015). Single and combined effects of microplastics and copper on the population growth of the marine microalgae Tetraselmis chuii. Estuarine Coastal Shelf Sci., 167: 269–275 (7 pages).

Davison, P.; Asch, R.G., (2011). Plastic ingestion by mesopelagic fishes in the North Pacific Subtropical Gyre. Mar. Ecol. Prog. Ser., 432: 173–180 (8 pages).

De La Torre-Roche, R.; Hawthorne, J.; Deng, Y.; Xing, B.; Cai, W.; Newman, L.A.; Wang, Q.; Ma, X.; Hamdi, H.; White, J.C., (2013). Multiwalled carbon nanotubes and C60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants. Environ. Sci. Technol., 47(21): 12539–12547 (9 pages).

De Souza Machado, A.A.; Kloas, W.; Zarfl, C.; Hempel, S.; Rillig, M.C., (2018). Microplastics as an emerging threat to terrestrial ecosystems. Global Change Biol., 24(4): 1405–1416 (12 pages).

Dehghani, S.; Moore, F.; Akhbarizadeh, R., (2017). Microplastic pollution in deposited urban dust, Tehran metropolis, Iran. Environ. Sci. Pollut. Res., 24(25): 20360–20371 (12 pages).

Della Torre, C.; Bergami, E.; Salvati, A.; Faleri, C.; Cirino, P.; Dawson, K.A.; Corsi, I., (2014). Accumulation and embryotoxicity of polystyrene nanoparticles at early stage of development of sea urchin embryos Paracentrotus lividus. Environ. Sci. Technol., 48(20): 12302–12311 (10 pages).

Deng, Y.; Zhang, Y.; Lemos, B.; Ren, H., (2017). Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Sci. Rep., 7(March): 1–10 (10 pages).

Desforges, J.P.W.; Galbraith, M.; Ross, P.S., (2015). Ingestion of Microplastics by Zooplankton in the Northeast Pacific Ocean. Arch. Environ. Contam. Toxicol., 69(3): 320–330 (11 pages).

Dietz, K.; Herth, S., (2011). Plant nanotoxicology. Trends Plant Sci., 16(11): 582-589 (8 pages).

Dovidat, L.C.; Brinkmann, B.W.; Vijver, M.G.; Bosker, T., (2019).  Plastic particles adsorb to the roots of freshwater vascular plant Spirodela polyrhiza but do not impair growth . Limnol. Oceanogr. Lett., 37–45 (9 pages).

Doyle, M.J.; Watson, W.; Bowlin, N.M.; Sheavly, S.B., (2011). Plastic particles in coastal pelagic ecosystems of the Northeast Pacific ocean. Mar. Environ. Res., 71(1): 41–52 (12 pages).

Driedger, A.G.J.; Dürr, H.H.; Mitchell, K.; Van Cappellen, P., (2015). Plastic debris in the Laurentian Great Lakes: A review. J. Great Lakes Res., 41(1): 9–19 (11 pages).

Dris, R.; Gasperi, J.; Saad, M.; Mirande, C.; Tassin, B., (2016). Synthetic fibers in atmospheric fallout: A source of microplastics in the environment? Mar. Pollut. Bull., 104(1–2): 290–293 (4 pages).

Duis, K.; Coors, A., (2016). Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects. Environ. Sci. Eur., 28(1): 1–25 (25 pages).

Enyoh, C.E.; Verla, A.W.; Verla, E.N.; Ibe, F.C.; Amaobi, C.E., (2019). Airborne microplastics: a review study on method for analysis, occurrence, movement and risks. Environ. Monit. Assess., 191(11): 1-17 (17 pages).

Eriksen, M.; Lebreton, L.C.M.; Carson, H.S.; Thiel, M.; Moore, C.J.; Borerro, J.C.; Galgani, F.; Ryan, P.G.; Reisser, J., (2014). Plastic Pollution in the World’s Oceans: More than 5 Trillion Plastic Pieces Weighing over 250,000 Tons Afloat at Sea. PLoS One, 9(12): 1–15 (15 pages).

Eriksen, M.; Mason, S.; Wilson, S.; Box, C.; Zellers, A.; Edwards, W.; Farley, H.; Amato, S., (2013). Microplastic pollution in the surface waters of the Laurentian Great Lakes. Mar. Pollut. Bull., 77(1–2): 177–182 (6 pages).

Espí, E.; Salmerón, A.; Fontecha, A.; García, Y.; Real, A.I., (2006). Plastic films for agricultural applications. J. Plast. Film Sheeting, 22(2): 85–102 (18 pages).

Fendall, L.S.; Sewell, M.A., (2009). Contributing to marine pollution by washing your face: Microplastics in facial cleansers. Mar. Pollut. Bull., 58(8): 1225–1228 (4 pages).

Ferreira, P.; Fonte, E.; Soares, M.E.; Carvalho, F.; Guilhermino, L., (2016). Effects of multi-stressors on juveniles of the marine fish Pomatoschistus microps: Gold nanoparticles, microplastics and temperature. Aquat. Toxicol., 170: 89–103 (15 pages).

Forte, M.; Iachetta, G.; Tussellino, M.; Carotenuto, R.; Prisco, M.; De Falco, M.; Laforgia, V.; Valiante, S., (2016). Polystyrene nanoparticles internalization in human gastric adenocarcinoma cells. Toxicol. in Vitro, 31: 126–136 (11 pages).

Geyer, R.; Jambeck, J.R.; Law, K.L., (2017). Production, use, and fate of all plastics ever made. Sci. Adv., 3(7): 25–29 (5 pages).

Giorgetti, L.; Spanò, C.; Muccifora, S.; Bottega, S.; Barbieri, F.; Bellani, L.; Ruffini Castiglione, M., (2020). Exploring the interaction between polystyrene nanoplastics and Allium cepa during germination: Internalization in root cells, induction of toxicity and oxidative stress. Plant Physiol. Biochem., 149(February): 170–177 (8 pages).

Godoy, V.; Blàzquez, G.; Calero, M.; Quesada, L.; Martín-Lara, M.A.,(2019). The potential of microplastics as carriers of metals. Environ. Pollut., 255: 1-11 (11 pages).

Gregory, M.R., (1996). Plastic scrubbers’ in hand cleansers: A further (and minor) source for marine pollution identified. Mar. Pollut. Bull., 32(12): 867–871 (4 pages).

He, D.; Luo, Y.; Lu, S.; Liu, M.; Song, Y.; Lei, L., (2018). Microplastics in soils: Analytical methods, pollution characteristics and ecological risks. TrAC, Trends Anal. Chem.          TRAC, 109: 163–172 (10 pages).

Hernandez, L.M.; Xu, E.G.; Larsson, H.C.E.; Tahara, R.; Maisuria, V.B.; Tufenkji, N., (2019). Plastic Teabags Release Billions of Microparticles and Nanoparticles into Tea. Environ. Sci. Technol., 53: 12300−12310 (11 pages).

Holmes, L.A.; Turner, A.; Thompson, R.C., (2012). Adsorption of trace metals to plastic resin pellets in the marine environment. Environ. Pollut., 160(1): 42–48 (7 pages)

Horton, A.A.; Dixon, S.J., (2018). Microplastics: An introduction to environmental transport processes. Wiley Interdisciplinary Reviews: Water, 5(2): 1-10 (10 pages).

Horton, A.A.; Walton, A.; Spurgeon, D.J.; Lahive, E.; Svendsen, C., (2017). Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci. Total Environ., 586: 127–141 (15 pages).

Huerta Lwanga, E.; Gertsen, H.; Gooren, H.; Peters, P.; Salánki, T.; Van Der Ploeg, M.; Besseling, E.; Koelmans, A.A.; Geissen, V., (2016). Microplastics in the Terrestrial Ecosystem: Implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). Environ. Sci. Technol., 50(5): 2685–2691 (7 pages).

Hurley, R.R.; Woodward, J.C.; Rothwell, J.J., (2017). Ingestion of Microplastics by Freshwater Tubifex Worms. Environ. Sci. Technol., 51(21): 12844–12851 (8 pages).

Jambeck, J.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L., (2015). Plastic waste inputs from land into ocean. Mar. Pollut., 347(6223): 3–6 (4 pages).

Jiang, J.Q., (2018). Occurrence of microplastics and its pollution in the environment: A review. Sustainable Prod. Consumption, 13(August): 16–23 (8 pages).

Jiang, X.; Chen, H.; Liao, Y.; Ye, Z.; Li, M.; Klobučar, G., (2019). Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba. Environ. Pollut., 250: 831–838 (8 pages).

Kalčíková, G.; Žgajnar Gotvajn, A.; Kladnik, A.; Jemec, A., (2017). Impact of polyethylene microbeads on the floating freshwater plant duckweed Lemna minor. Environ. Pollut., 230: 1108–1115 (8 pages).

Karan, H.; Funk, C.; Grabert, M.; Oey, M.; Hankamer, B., (2019). Green Bioplastics as Part of a Circular Bioeconomy. Trends Plant Sci., 24(3): 237–249 (13 pages).

Kim, D.; Chae, Y.; An, Y.J., (2017). Mixture Toxicity of Nickel and Microplastics with Different Functional Groups on Daphnia magna. Environ. Sci. Technol., 51(21): 12852–12858 (7 pages).

Klein, M.; Fischer, E.K., (2019). Microplastic abundance in atmospheric deposition within the Metropolitan area of Hamburg, Germany. Sci. Total Environ., 685: 96–103 (8 pages).

Koelmans, A.A.; Mohamed Nor, N.H.; Hermsen, E.; Kooi, M.; Mintenig, S.M.; De France, J., (2019). Microplastics in freshwaters and drinking water: Critical review and assessment of data quality. Water Res., 155: 410–422 (13 pages).

Kramm, J.; Völker, C.; Wagner, M., (2018). Superficial or Substantial: Why Care about Microplastics in the Anthropocene? Environ. Sci. Technol., 52(6): 3336-3337 (2 pages).

Lechner, A.; Ramler, D., (2015). The discharge of certain amounts of industrial microplastic from a production plant into the River Danube is permitted by the Austrian legislation. Environ. Pollut., 200: 159–160 (2 pages).

Lee, W.M.; jooan, Y.; Hyeonyoon; Seokkweon, H., (2008). Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (phaseolus radiatus) and wheat (triticum aestivum): Plant agar test for water-insoluble nanoparticles. Environ. Toxicol. Chem., 27(9): 1915–1921 (7 pages).

Lei, K.; Qiao, F.; Liu, Q.; Wei, Z.; Qi, H.; Cui, S.; Yue, X.; Deng, Y.; An, L., (2017). Microplastics releasing from personal care and cosmetic products in China. Mar. Pollut. Bull., 123(1–2): 122–126 (5 pages).

Leslie, H.A., (2014). Review of microplastics in cosmetics. IVM Inst. for Environ. Stud., 476(July), 1-33 (33 pages).

Li, L.; Luo, L.; Peijnenburg, W.J.G.M.; Li, R.; Yang, J.; Zhou, Q., (2019). Confocal measurement of microplastics uptake by plants. MethodsX, 6360: 1-7 (7 pages).

Lian, J.; Wu, J.; Xiong, H.; Zeb, A.; Yang, T.; Su, X.; Su, L.; Liu, W., (2019). Impact of polystyrene nanoplastics (PSNPs) on seed germination and seedling growth of wheat (Triticum aestivum L.). J. Hazard. Mater., 38: 121620 (11 pages).

Lin, S.; Reppert, J.; Hu, Q.; Hudson, J.S.; Reid, M.L.; Ratnikova, T.A.; Rao, A.M.; Luo, H.; Ke, P.C., (2009). Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small, 5(10): 1128–1132 (5 pages).

Lohmann, R., (2017). Microplastics are not important for the cycling and bioaccumulation of organic pollutants in the oceans—but should microplastics be considered POPs themselves? Integr. Environ. Assess. Manage., 13(3): 460–465 (6 pages).

Lu, Y.; Zhang, Y.; Deng, Y.; Jiang, W.; Zhao, Y.; Geng, J.; Ding, L.; Ren, H., (2016). Uptake and accumulation of polystyrene microplastics in zebrafish (danio rerio) and toxic effects in liver. Environ. Sci. Technol., 50(7): 4054–4060 (7 pages).

Lusher, A.L.; McHugh, M.; Thompson, R.C., (2013). Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel. Mar. Pollut. Bull., 67(1–2): 94–99 (6 pages).

Ma, X.; Geiser-Lee, J.; Deng, Y.; Kolmakov, A., (2010). Interactions between engineered nanoparticles (ENPs) and plants: Phytotoxicity, uptake and accumulation. Sci. Total Environ., 408(16): 3053–3061 (9 pages).

Magnusson, K.; Norén, F., (2014). Screening of microplastic particles in and down-stream a wastewater treatment plant. IVL Swedish Environ. Res. Inst., C 55(C): 1-22 (22 pages).

Mahon, A.M.; O’Connell, B.; Healy, M.G.; O’Connor, I.; Officer, R.; Nash, R.; Morrison, L., (2017). Microplastics in sewage sludge: Effects of treatment. Environ. Sci. Technol., 51(2): 810–818 (9 pages).

Mao, Y.; Ai, H.; Chen, Y.; Zhang, Z.; Zeng, P.; Kang, L.; Li, W.; Gu, W.; He, Q.; Li, H., (2018). Phytoplankton response to polystyrene microplastics: Perspective from an entire growth period. Chemosphere, 208: 59–68 (10 pages).

Mason, S.A.; Garneau, D.; Sutton, R.; Chu, Y.; Ehmann, K.; Barnes, J.; Fink, P.; Papazissimos, D.; Rogers, D.L., (2016). Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent. Environ. Pollut., 218: 1045–1054 (10 pages).

Mattsson, K.; Johnson, E.V.; Malmendal, A.; Linse, S.; Hansson, L.A.; Cedervall, T., (2017). Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain. Sci. Rep., 7(1): 1–7 (7 pages).

McCormick, A.; Hoellein, T.J.; Mason, S.A.; Schluep, J.; Kelly, J.J., (2014). Microplastic is an abundant and distinct microbial habitat in an urban river. Environ. Sci. Technol., 48(20): 11863–11871 (9 pages).

McDermid, K.J.; McMullen, T.L., (2004). Quantitative analysis of small-plastic debris on beaches in the Hawaiian archipelago. Mar. Pollut. Bull., 48(7–8): 790–794 (5 pages).

Miralles, P.; Church, T.L.; Harris, A.T., (2012a). Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environ. Sci. Technol., 46(17): 9224–9239 (16 pages).

Miralles, P.; Johnson, E.; Church, T.L.; Harris, A.T., (2012b). Multiwalled carbon nanotubes in alfalfa and wheat: Toxicology and uptake. J R Soc Interface, 9(77): 3514–3527 (14 pages).

Moore, C.J.; Moore, S.L.; Weisberg, S.B.; Lattin, G.L.; Zellers, A.F., (2002). A comparison of neustonic plastic and zooplankton abundance in southern California’s coastal waters. Mar. Pollut. Bull., 44(10): 1035–1038 (4 pages).

Murray, F.; Cowie, P.R., (2011). Plastic contamination in the decapod crustacean Nephrops norvegicus (Linnaeus, 1758). Mar. Pollut. Bull., 62(6): 1207–1217 (11 pages).

Nel, H.A.; Froneman, P.W., (2015). A quantitative analysis of microplastic pollution along the south-eastern coastline of South Africa. Mar. Pollut. Bull., 101(1): 274–279 (6 pages).

Neves, D.; Sobral, P.; Ferreira, J.L.; Pereira, T., (2015). Ingestion of microplastics by commercial fish off the Portuguese coast. Mar. Pollut. Bull., 101(1): 119–126 (8 pages).

Ng, E.L.; Huerta Lwanga, E.; Eldridge, S.M.; Johnston, P.; Hu, H.W.; Geissen, V.; Chen, D., (2018). An overview of microplastic and nanoplastic pollution in agroecosystems. Sci. Total Environ., 627: 1377–1388 (12 pages).

Nizzetto, L.; Bussi, G.; Futter, M.N.; Butterfield, D.; Whitehead, P.G., (2016a). A theoretical assessment of microplastic transport in river catchments and their retention by soils and river sediments. Environ Sci Process Impacts, 18(8): 1050–1059 (10 pages).

Nizzetto, L.; Futter, M.; Langaas, S., (2016b). Are Agricultural Soils Dumps for Microplastics of Urban Origin? Environ. Sci. Technol., 50(20): 10777–10779 (3 pages).

Nolte, T.M.; Hartmann, N.B.; Kleijn, J.M.; Garnæs, J.; van de Meent, D.; Jan Hendriks, A.; Baun, A., (2017). The toxicity of plastic nanoparticles to green algae as influenced by surface modification, medium hardness and cellular adsorption. Aquat. Toxicol., 183(2017): 11–20 (10 pages).

Oliveira, M.; Ribeiro, A.; Hylland, K.; Guilhermino, L., (2013). Single and combined effects of microplastics and pyrene on juveniles (0+ group) of the common goby Pomatoschistus microps (Teleostei, Gobiidae). Ecol. Indic., 34: 641–647 (7 pages).

Pauly, J.L.; Stegmeier, S.J.; Allaart, H.A.; Cheney, R.T.; Zhang, P.J.; Mayer, A.G.; Streck, R.J., (1998). Inhaled cellulosic and plastic fibers found in human lung tissue. Cancer Epidemiol. Biomarkers Prev., 7(5): 419–428 (10 pages).

Pini, A.; Tomassetti, P.; Matiddi, M.; De Lucia, G.A.; Camedda, A.; Zampetti, G.; Lattanzi, C.; Leuzzi, G.; Monti, P., (2019). Microplastic samplings and inverse trajectory recognition in the Mediterranean Sea. 2018 IEEE International Workshop on Metrology for the Sea, 115–119 (5 pages).

Pivokonsky, M.; Cermakova, L.; Novotna, K.; Peer, P.; Cajthaml, T.; Janda, V., (2018). Occurrence of microplastics in raw and treated drinking water. Sci. Total Environ., 643: 1644–1651 (8 pages).

Prata, J.C.; Lavorante, B.R.B.O.; Maria da, M. da C.; Guilhermino, L., (2018). Influence of microplastics on the toxicity of the pharmaceuticals procainamide and doxycycline on the marine microalgae Tetraselmis chuii. Aquat. Toxicol., 197(September 2017): 143–152 (10 pages).

Prata, J.C., (2018). Airborne microplastics: Consequences to human health? Environ. Pollut., 234: 115–126 (12 pages).

Qi, Y.; Yang, X.; Pelaez, A.M.; Huerta Lwanga, E.; Beriot, N.; Gertsen, H.; Garbeva, P.; Geissen, V., (2018). Macro- and micro- plastics in soil-plant system: Effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Sci. Total Environ., 645: 1048–1056 (9 pages).

Rainieri, S.; Barranco, A., (2019). Microplastics, a food safety issue? Trends Food Sci. Technol., 84(December 2018): 55–57 (3 pages).

Rainieri, S.; Conlledo, N.; Larsen, B.K.; Granby, K.; Barranco, A., (2018). Combined effects of microplastics and chemical contaminants on the organ toxicity of zebrafish (Danio rerio). Environ. Res., 162(September 2017): 135–143 (9 pages).

Rillig, M.C., (2012). Microplastic in terrestrial ecosystems and the soil? Environ. Sci. Technol., 46(12): 6453–6454 (2 pages).

Rillig, M.C.; Ingraffia, R.; De Souza Machado, A.A., (2017a). Microplastic incorporation into soil in agroecosystems. Front. Plant Sci., 8(October): 8–11 (4 pages).

Rillig, M.C.; Lehmann, A.; De Souza Machado, A.A.; Yang, G., (2019). Microplastic effects on plants. New Phytol., 223(3): 1066–1070 (5 pages).

Rillig, M.C.; Ziersch, L.; Hempel, S., (2017b). Microplastic transport in soil by earthworms. Sci. Rep., 7(1): 1–6 (6 pages).

Rochman, C.M.; Kross, S.M.; Armstrong, J.B.; Bogan, M.T.; Darling, E.S.; Green, S.J.; Smyth, A.R.; Veríssimo, D., (2015). Scientific Evidence Supports a Ban on Microbeads. Environ. Sci. Technol., 49(18): 10759–10761 (3 pages).

Rodriguez-Seijo, A.; Lourenço, J.; Rocha-Santos, T.A.P.; Da Costa, J.; Duarte, A.C.; Vala, H.; Pereira, R., (2017). Histopathological and molecular effects of microplastics in Eisenia andrei Bouché. Environ. Pollut., 220: 495–503 (9 pages).

Saruhan, V.; Gul, I.; Aydin, I., (2010). The effects of sewage sludge used as fertilizer on agronomic and chemical features of bird’s foot trefoil (Lotus corniculatus L.) and soil pollution. Sci. res. essays, 5(17): 2567–2573 (7 pages).

Schirinzi, G.F.; Pérez-Pomeda, I.; Sanchís, J.; Rossini, C.; Farré, M.; Barceló, D., (2017). Cytotoxic effects of commonly used nanomaterials and microplastics on cerebral and epithelial human cells. Environ. Res., 159(August): 579–587 (9 pages).

Sharma, S.; Chatterjee, S., (2017). Microplastic pollution, a threat to marine ecosystem and human health: a short review. Environ. Sci. Pollut. Res., 24(27): 21530–21547 (18 pages).

Shen, C.X.; Zhang, Q.F.; Li, J.; Bi, F.C.; Yao, N., (2010). Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes. Am. J. Bot., 97(10): 1602–1609 (8 pages).

Shruti, V.C.; Kutralam-Muniasamy, G., (2019). Bioplastics: Missing link in the era of Microplastics. Sci. Total Environ., 697: 134139 (14 pages).

Siegfried, M.; Koelmans, A.A.; Besseling, E.; Kroeze, C., (2017). Export of microplastics from land to sea. A modelling approach. Water Res., 127: 249–257 (9 pages).

Singh, R.P.; Agrawal, M., (2008). Potential benefits and risks of land application of sewage sludge. Waste Manage., 28(2): 347–358 (12 pages).

Sjollema, S.B.; Redondo-Hasselerharm, P.; Leslie, H.A.; Kraak, M.H.S.; Vethaak, A.D., (2016). Do plastic particles affect microalgal photosynthesis and growth? Aquat. Toxicol., 170: 259–261 (3 pages).

Sommer, F.; Dietze, V.; Baum, A.; Sauer, J.; Gilge, S.; Maschowski, C.; Gieré, R., (2018). Tire abrasion as a major source of microplastics in the environment. Aerosol Air Qual. Res., 18(8): 2014–2028 (15 pages).

Steinmetz, Z.; Wollmann, C.; Schaefer, M.; Buchmann, C.; David, J.; Tröger, J.; Muñoz, K.; Frör, O.; Schaumann, G.E., (2016). Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Sci. Total Environ., 550: 690–705 (16 pages).

Turner, A.; Holmes, L., (2015). Adsorption of trace metals by microplastic pellets in fresh water. Environ. Chem., 12(5): (11 pages).

Trapp, S., (2000). Modelling uptake into roots and subsequent translocation of neutral and ionisable organic compounds. Pest. Manage. Sci., 56(9): 767–778 (12 pages).

Van Sebille, E.; Wilcox, C.; Lebreton, L.; Maximenko, N.; Hardesty, B.D.; Van Franeker, J.A.; Eriksen, M.; Siegel, D.; Galgani, F.; Law, K.L., (2015). A global inventory of small floating plastic debris. Environ. Res. Lett., 10(12): 1-12 (12 pages).

van Weert, S.; Redondo-Hasselerharm, P.E.; Diepens, N.J.; Koelmans, A.A., (2019). Effects of nanoplastics and microplastics on the growth of sediment-rooted macrophytes. Sci. Total Environ., 654: 1040–1047 (8 pages).

Verla, A.W.; Enyoh, C.E.; Verla, E.N.; Nwarnorh, K.O., (2019). Microplastic–toxic chemical interaction: a review study on quantified levels, mechanism and implication. In SN Appl. Sci. (Vol. 1, Issue 11): 1-30 (30 pages).

Vogelsang, C.; Lusher, A.L.; Dadkhah, M.E.; Sundvor, I.; Umar, M.; Ranneklev, S.B.; Eidsvoll, D.; Meland, S., (2019). Microplastics in road dust – characteristics, pathways and measures (Issue 7231): 1-173 (173 pages).

Wang, F.; Yang, W.; Cheng, P.; Zhang, S.; Zhang, S.; Jiao, W.; Sun, Y., (2019). Adsorption characteristics of cadmium onto microplastics from aqueous solutions. Chemosphere, 235, 1073-1080. (8 pages).

Wang, F.; Zhang, X.; Zhang, S.; Zhang, S.; Sun, Y., (2020). Chemosphere Interactions of microplastics and cadmium on plant growth and arbuscular mycorrhizal fungal communities in an agricultural soil. Chemosphere, 254: 126791 (10 pages).

Wright, S.L.; Thompson, R.C.; Galloway, T.S., (2013). The physical impacts of microplastics on marine organisms: a review. Environ. Pollut., (Barking, Essex: 1987), 178: 483–492 (10 pages).

Wu, W.M.; Yang, J.; Criddle, C.S., (2017). Microplastics pollution and reduction strategies. Front. Environ. Sci. Eng., 11(1): 1–4 (4 pages).

Yang, D.; Shi, H.; Li, L.; Li, J.; Jabeen, K.; Kolandhasamy, P., (2015). Microplastic Pollution in Table Salts from China. Environ. Sci. Technol., 49(22): 13622–13627 (6 pages).

Yuan, W.; Zhou, Y.; Liu, X.; Wang, J., (2019). New Perspective on the Nanoplastics Disrupting the Reproduction of an Endangered Fern in Artificial Freshwater [Research-article]. Environ. Sci. Technol., 53(21): 12715–12724 (10 pages).

Zhang, C.; Chen, X.; Wang, J.; Tan, L., (2017). Toxic effects of microplastic on marine microalgae Skeletonema costatum: Interactions between microplastic and algae. Environ. Pollut., 220: 1282–1288 (7 pages).

Zhang, Q.; Qu, Q.; Lu, T.; Ke, M.; Zhu, Y.; Zhang, M.; Zhang, Z.; Du, B.; Pan, X.; Sun, L.; Qian, H., (2018). The combined toxicity effect of nanoplastics and glyphosate on Microcystis aeruginosa growth. Environ. Pollut., 243: 1106–1112 (7 pages).

Zhang, T.R.; Wang, C.X.; Dong, F.Q.; Gao, Z.Y.; Zhang, C.J.; Zhang, X.J.; Fu, L.M.; Wang, Y.; Zhang, J.P., (2019). Uptake and Translocation of Styrene Maleic Anhydride Nanoparticles in Murraya exotica Plants As Revealed by Noninvasive, Real-Time Optical Bioimaging [Research-article]. Environ. Sci. Technol., 53(3): 1471–1481 (11 pages).

Zhao, Q.; Ma, C.; White, J.C.; Dhankher, O.P.; Zhang, X.; Zhang, S.; Xing, B., (2017). Quantitative evaluation of multi-wall carbon nanotube uptake by terrestrial plants. Carbon, 114: 661–670 (10 pages).

Zhu, B.K.; Fang, Y.M.; Zhu, D.; Christie, P.; Ke, X.; Zhu, Y.G., (2018a). Exposure to nanoplastics disturbs the gut microbiome in the soil oligochaete Enchytraeus crypticus. Environ. Pollut., 239: 408–415 (8 pages).

Zhu, D.; Chen, Q.L.; An, X.L.; Yang, X.R.; Christie, P.; Ke, X.; Wu, L.H.; Zhu, Y.G., (2018b). Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition. Soil Biol. Biochem., 116(October 2017): 302–310 (9 pages).

Zhu, F.; Zhu, C.; Wang, C.; Gu, C., (2019). Occurrence and Ecological Impacts of Microplastics in Soil Systems: A Review. Bull. Environ. Contam. Toxicol., 102(6): 741–749 (9 pages).

Letters to Editor

GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.

CAPTCHA Image