1 Department of the Environment, Faculty of Natural Resources and Earth Sciences, University of Kashan, Kashan, Iran

2 Department of Natural Resources, Isfahan University of Technology, Isfahan, Iran

3 Department of the Environment, Faculty of Natural Resources and Marine Science, Tarbiat Modares University, Noor, Iran

4 Department of Environmental Science, Gorgan University of Agricultural and Natural Resources, Gorgan, Iran

5 Biodiversity Institute, University of Kansas, Lawrence, Kansas, USA


Understanding distributions of wildlife species is a key step towards identifying biodiversity hotspots and designing effective conservation strategies. In this paper, the spatial pattern of diversity of birds in Golestan Province, Iran was estimated. Ecological niche modeling was used to determine distributions of 144 bird species across the province using a maximum entropy algorithm. Richness maps across all birds, and separately for rare and threatened species, were prepared as approximations to hotspots. Results showed close similarity between hotspots for all birds and those for rare birds; hotspots were concentrated in the southern and especially the southwestern parts of the province. Hotspots for threatened birds tended more to the central and especially the western parts of the province, which include coastal habitats. Based on three criteria, it is clear that the western part is the most important area of the province in terms of bird Faunas. Despite some shortcomings, hotspot analysis for birds could be applied to guide conservation efforts and provide useful tool towards efficient conservation action.

Graphical Abstract

Using ecological niche modeling to determine avian richness hotspots


  • Distributions of 144 bird species were determined using ecological niche modeling
  • Birds hotspots were prepared using richness, rarity, and endangerment criteria
  • Western part of the study area is the most important area of the province in terms of bird faunas


Main Subjects

Barry, S., Elith, J., (2006). Error and uncertainty in habitat models. J. Appl. Ecol., 43: 13-423 (410 pages).

Brevik, E.C., Cerdà, A.; Mataix-Solera, J.; Pereg, L.; Quinton, J.N.; Six, J.; Van Oost, K., (2015). The interdisciplinary nature of soil. Soil., 1: 117-129 (13 pages).

Brito, J.C.; Acosta, A.L.; A´lvares, F.; Cuzin, F., (2009). Biogeography and conservation of taxa from remote regions: An application of ecological-niche based models and GIS to North-African Canids. Biol. Conserv.,142: 3020-3029 (10 pages).

Chatterjee, S.; Hadi, A., (2006). Regression analysis by example. John Wiley and Sons, New York, (416 pages).

Elith, J., (2002). Quantitative methods for modeling species habitat: Comparative performance and an application to Australian plants. In: Ferson S,Burgman M (eds) Quantitative methods for conservation biology, Springer,New York, pp 39-58 (20 pages).

Elith, J.; Graham, C.; Anderson, R.P.; Dudik,  M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.;  Leathwick, J.R.; Lehmann, A.; Li, J.; Lohmann, L.G.; Loiselle, B.A.; Manin, G.; Moritz, C.; Nakamura, M.; Nakazawa, Y.; Overton, J.M.C.; Peterson, A.T.; Phillips, S.J.; Richardson, K.S.; Scachetti-Prereira, R.; Schapire, R.E.; Sobero´n, J.; Williams, S.; Wisz, M.S.; Zimmermann, N.E. ,(2006). Novel methods improve prediction of species distributions from occurrence data. Ecography., 29: 129-151 (23 pages).

Gaston, K.J.; Blackburn, T.M.; Goldewijk, K.K., (2003). Habitat conversion and global avian biodiversity loss. Proc. R. Soc. B., 270: 1293-1300 (7 pages).

Giovanelli, J.G.R.; De Siqueira, M.F.; Haddad, C.F.B.; Alexandrino, J., (2010). Modeling a spatially restricted distribution in the Neotropics: How the size of calibration area affects the performance of five presence-only methods. Ecol. Model., 221: 215-224 (10 pages).

Gray,  D.; Scarsbrook, M.P.; Harding, J.S., (2006). Spatial biodiversity patterns in a large New Zealand braided river. N. Z. J. Mar. Freshwater Res., 40: 631-642 (12 pages).

Grenyer, R.; Orme, C.D.L.; Jackson, S.F.; Thomas, G.H.; Davies, R.G.; Davies, T.J.; Jones, K.E.; Olson, V.A.; Ridgely, R.S.; Rasmussen, P.C.; Ding, T.S.; Bennett, P.M.; Blackburn, T.M.; Gaston, K.J.; Gittleman, J.L.; Owens, I.P.F., (2006). Global distribution and conservation of rare and threatened vertebrates. Nature., 444: 93-96 (4 pages).

Hedo de Santiago, J.; Lucas-Borja, M.E.; Wic-Baena, C.; Andrés-Abellán, M.; de lasHeras, J., (2016). Effects of thinning and induced drought on microbiological soil properties and plant species diversity at dry and semiarid locations. Land Degrad. Dev., 27(4): 1151-1162 (12 pages).

Howard, P.C.; Viskanic, P.; Davenport, T.R.B.; Baltzer, M.; Dickinson, C.J.; Lwanga, J.S.; Matthews, R.E.; Balmford, A., (1998). Complementarity and the use of indicator groups for reserve selection in Uganda.Nature., 394: 472-475 (3 pages).

Ibáñez, J.J.; Pérez-Gómez, R.; Brevik, E.C.; Cerdà, A., (2016). Islands of biogeodiversity in arid lands on a polygons map study: Detecting scale invariance patterns from natural resources maps. Sci. Total Environ., 573: 1638-1647 (10 pages).

Jime´nez-Valverde, A.; Lobo, J.M., (2007). Threshold criteria for conversion of probability of species presence to either–or presence–absence. Acta Oecol., 31: 361-369 (9 pages).

Jose, M.P.; Fernando, T., (1997). Prediction of functional characteristics of ecosystem: a comparison of artificial neural networks and regression models. Ecol. Model., 98:173-186 (14 pages).

Kadmon, R.; Farber, O.; Danin, A., (2003). A systematic analysis of factors affecting the performance of climatic envelope models. Ecol. Appl., 13:853-867 (15 pages).

Ko, C.Y.; Lin, R.S.; Ding, T.S.; Hsieh, C.H.; Lee, P.F., (2009). Identifying biodiversity hotspots by predictive models: A case study using Taiwan's endemic bird species. Zool. Stud., 48: 418-431(14 pages).

Liu, C.; Berry, P.M.; Dawson, T.P.; Pearson, R.G., (2005). Selecting thresholds of occurrence in the prediction of species distributions. Ecography, 28: 385-393 (9 pages).

Mirzaei, R., (2013). Determination of suitable areas for the conservation of birds based on spatial distribution of environmental threats and species diversity in Golestan Province. Dissertation, Tarbiat Modares University publication, (127 pages).

Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonseca, G.A.B.; Kent, J., (2000). Biodiversity hotspots for conservation priorities. Nature, 403: 853-858 (6 pages).

Orme, C.D.L.;  Davies, R.G.; Burgess, M.; Eigenbrod, F.; Pickup, N.; Olson, V.A.; Webster, A.J.; Ding, T.S.; Rasmussen, P.C.; Ridgely, R.S.; Stattersfield, A.J.; Bennett, P.M.; Blackburn, T.M.; Gaston, K.J.; Owens, I.P.F., (2005). Global hotspots of species richness are not congruent with endemism or threat. Nature, 436: 1016-1019 (4 pages).

Pearce, J.; Ferrier, S., (2000). Evaluating the predictive performance of habitat models developed using logistic regression. Ecol. Model., 133: 225-245 (21 pages).

Peterson, A.T., (2001). Predicting species’ geographic distributions based on ecological niche modeling.  The Condor., 103: 599–605 (7 pages).

Peterson, A.T.;  Soberon, J.; Pearson, R.G.; Anderson, R.P.; Martinez-Meyer, E.; Nakamura, M.; Araujo, M.A., (2011). Ecological niches and geographic distributions (MPB-49). Princeton University Press, Princeton, (328 pages).

Pineda, E.; Lobo, J.M., (2009). Assessing the accuracy of species distribution models to predict amphibian species richness patterns. J. Anim. Ecol., 78: 182-190 (9 pages).

Pinto, M.P.; FelizolaDiniz-Filho, J.A.; Bini, L.M.; Blamires, D.; Rangel, T.F., (2008). Biodiversity surrogate groups and conservation priority areas: birds of the Brazilian Cerrado. Divers. Distrib.,14: 78-86 (9 pages).

Pous, P.D.; Beukema, W.; Weterings, M.; Dummer, I.; Geniez, P., (2011). Area prioritization and performance evaluation of the conservation area network for the Moroccan herpetofauna: a preliminary assessment. Biodivers. Conserv., 20: 89-118 (30 pages).

Raes, N.; Roos, M.C.; Slik, J.W.F.; Loon, E., TerSteege, H., (2009). Botanical richness and endemicity patterns of Borneo derived from species distribution models. Ecography, 32: 180-192 (13 pages).

Reyers, B., van Jaarsveld, A.S., Krüger, M., (2000). Complementarily as a biodiversity indicator strategy. Proc. R. Soc. B., 267: 505-513 (9 pages).

Rodríguez, J.P.; Brotons, L.; Bustamante, J.; Seoane, J., (2007). The application of predictive modeling of species distribution to biodiversity conservation. Divers. Distrib., 13: 243-251(9 pages).

Ron, S.R., (2005). Predicting the distribution of the amphibian pathogen Batrachochytriumdendrobatidis in the New World. Biotropica., 37: 209-221 (12 pages).

Schouten, M.A.; Barendregt, A.; Verweij, P.A.; Kalkman, V.J.; Kleukers, R.M.J.C.; Lenders, H.J.R.; Siebel, H.N., (2010). Defining hotspots of characteristic species for multiple taxonomic groups in the Netherlands. Biodivers. Conserv., 19: 2517-2536 (20 pages).

Stavi, I.; Rachmilevitch, S.; Yizhaq, H., (2016). Small-scale geodiversity regulates functioning, connectivity, and productivity of shrubby, semi-arid rangelands. Land Degrad. Dev., doi:10.1002/ldr.2469, (6 pages).

Stockwell, D., (2007). Niche modeling. Chapman and Hall/CRC Press, Boca Raton, (199 pages).

Tognelli, M.F.; Abba, A.M.; Bender, J.B.; Seitz, V.P., (2011). Assessing conservation priorities of xenarthrans in Argentina. Biodivers. Conserv., 20: 141-151 (11 pages).

Wu, T.Y.; Walther, B.A.; Chen, Y.H.; Lin, R.S.; Lee, P.F., (2013). Hotspot analysis of Taiwanese breeding birds to determine gaps in the protected area network. Zool. Stud., 52: 1-29 (29 pages).        

Walther, B.A.; Larigauderie, A.; Loreau, M., (2011). Diversities: Biodiversity science integrating research and policy for human well-being. In: Brauch HG, Spring ÚO, Mesjasz C (eds.) Coping with global environmental change, disasters and security- threats, challenges, vulnerabilities and risks, Springer-Verlag, Berlin, pp 1235-1248 (14 pages). 

Waters, C.M.; Orgill, S.E.; Melville, G.J.; Toole, I.D.; Smith, W.J., (2016). Management of grazing intensity in the semi-arid rangelands of southern Australia: Effects on soil and biodiversity. Land Degrad. Dev., doi:10.1002/ldr.2602 (30 pages).

Turner, W.; Spector, S., Gardiner, N.; Fladeland, M.; Sterling, E.; Steininger, M., (2003). Remote sensing for biodiversity science and conservation. Trends Ecol. Evol., 18: 306-314 (8 pages).

Urbina-Cardona, J.N.; Loyola, R.D., (2008). Applying niche-based models to predict endangered-hylid potential distributions: Are neotropical protected areas effective enough? Trop. Conserv. Sci., 1: 417- 445 (29 pages).

Xu, L.; Cao, Y.; Li, W.; Cheng, Y.; Qin, T.; Zhou, Y.; Liu, F., (2016). Maintain spatial heterogeneity, maintain biodiversity: A seed bank study in a grazed alpine fen meadow. Land Degrad. Dev., doi:10.1002/ldr.2606 (30 pages).

Letters to Editor

GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.