Department of Civil Engineering, K.N. Toosi University of Technology, Tehran, Iran


Most parts of the urban areas are faced with the problem of floating fine particulate matter. Therefore, it is crucial to estimate the amounts of fine particulate matter concentrations through the urban atmosphere. In this research, an artificial neural network technique was utilized to model the PM2.5 dispersion in Tehran City. Factors which are influencing the predicted value consist of weather-related and air pollution-related data, i.e. wind speed, humidity, temperature, SO2, CO, NO2, and PM2.5 as target values. These factors have been considered in 19 measuring stations (zones) over urban area across Tehran City during four years, from March 2011 to March 2015. The results indicate that the network with hidden layer including six neurons at training epoch 113, has the best performance with the lowest error value (MSE=0.049438) on considering PM2.5 concentrations across metropolitan areas in Tehran. Furthermore, the “R” value for regression analysis of training, validation, test, and all data are 0.65898, 0.6419, 0.54027, and 0.62331, respectively. This study also represents the artificial neural networks have satisfactory implemented for resolving complex patterns in the field of air pollution.

Graphical Abstract

Artificial neural network forecast application for fine particulate matter concentration using meteorological data


  • Critical importance of Tehran's air particulate matters pollution using artificial neural network
  • PM2.5 temporal prediction has been estimated in Great Tehran
  • Using ANN approach for modeling and the data was divided into three groups of training, validating, and testing of the network
  • The function optimization technique used is the scaled conjugate gradient algorithm


Letters to Editor

GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.