Department of Aquatic Biology and Fisheries, University of Kerala,Thiruvananthapuram 695581, India


Multivariate statistical techniques such as cluster analysis, multidimensional scaling and principal component analysis were applied to evaluate the temporal and spatial variations in water quality data set generated for two years (2008-2010) from six monitoring stations of Veli-Akkulam Lake and compared with a regional reference lake Vellayani of south India. Seasonal variations of 14 different physicochemical parameters analyzed were as follows: pH (6.42-7.48), water temperature (26.0-31.28°C), salinity (0.50-26.81 ppt), electrical conductivity (47-20656.31 µs/cm), dissolved oxygen (0.078-7.65 mg/L), free carbon-dioxide (3.8-51.8 mg/L), total hardness (27.20-2166.6 mg/L), total dissolved solids (84.66-4195 mg/L), biochemical oxygen demand (1.57-25.78 mg/L), chemical oxygen demand (5.35-71.14 mg/L), nitrate (0.012-0.321 µg/ml), nitrite (0.24-0.79 µg/ml), phosphate (0.04-5.88 mg/L), and sulfate (0.27-27.8 mg/L). Cluster analysis showed four clusters based on the similarity of water quality characteristics among sampling stations during three different seasons (pre-monsoon, monsoon and post-monsoon). Multidimensional scaling in conjunction with cluster analysis identified four distinct groups of sites with varied water quality conditions such as upstream, transitional and downstream conditions  in Veli-Akkulam Lake and a reference condition at Vellayani Lake. Principal Component Analysis showed that Veli-Akkulam Lake was seriously deteriorated in water quality while acceptable water quality conditions were observed at reference lake Vellayani. Thus the present study could estimate the effectiveness of multivariate statistical approaches for assessing water quality conditions in lakes.

Graphical Abstract


  • Monitoring of Veli-Akkulam Lake using multivariate statistical techniques
  • Water quality parameters declines in Veli-Akkulam Lake when compared with Vellayani Lake
  • Vellayani Lake water quality parameters were within the standard prescribed limit of inland water quality criteria


Main Subjects

Andersen, J.H.; Conley, D.J; Hedal, S., (2004). Palaeoecology, reference conditions and classification of ecological status: the EU Water Framework Directive in practice. Marine Poll. Bull., 49: 283–90 (8 pages).

APHA (2005).  Standard methods of the examination of water and waste water.  21 st. Ed., APHA, AWWA and WPCF Publications, Washington DC, USA, pp.1368.

Azevedo, L.B.; van Zelm, R.; Leuven, R.S.; Hendriks, A.J.; Huijbregts, M.A.; (2015). Combined ecological risks of nitrogen and phosphorus in European freshwaters. Environ. Poll. 200: 85–92 (8 pages).

Barbier, E.B.; Acreman, M.C.;  Knowler, D., (1997). Economic valuation of wetlands: a guide for policy makers and planners. Ramsar Convention Bureau. Gland, Switzerland, pp.127.

Bhardwaj, R.M., (2005). Water Quality Monitoring in India: Achievements and Constraints, IWG-Env, International Work Session on Water Statistics, Vienna, pp. 12. 

Cardinale, B.J.; Duffy, J.E.; Gonzalez, A.;  Hooper, D.U.; Perrings, C.; Venail, P.; Narwani, A.; Mace, G.M.; Tilman, D.; Wardle, D.A.; Kinzig, A.P.; Daily, G.C.; Loreau, M.; Grace, J.B.;  Larigauderie, A.; Srivastava, D.S.; Naeem, S.; (2012). Biodiversity loss and its impact on humanity. Nature 486: 59–67 (9 pages).

Carpenter, S.R.; Caraco, N.F.; Correll, D.L.; Howarth, R.W.; Sharpley, A.N.; Smith, V.H; (1998). Non-point pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 8: 559–568 (10 pages).

Carpenter, S.R.; Stanley, E.H; Vander Zanden, M.J., (2011). State of the world's freshwater ecosystems: physical, chemical, and biological changes. Annu. Rev. Environ. Resour. 36: 75–99 (15 pages).

Chandrasekhar, J.S.; Lenin, B.K.; Somasekher, R.K.; (2003). Impact of urbanization on Bellandur Lake, Bangalore– a case study.  J. Environ. Biol. 24: 223–227 (5 pages).

Chapin, F.S.;  Zavaleta, E.S.; Eviner, V.T.; Naylor, R.L.; Vitousek, P.M.; Reynolds, H.L.; Hooper D.U.; Lavorel, S.; Sala, O.E.; Hobbie, S.E.; Mack, M.C.; Díaz, S., (2000). Consequences of changing biodiversity. Nature 405: 234–242 (9 pages).

Chislock, M.F.; Doster, E.; Zitomer, R.A.; Wilson, A.E., (2013). Eutrophication: Causes, Consequences, and Controls in Aquatic Ecosystems. Nat. Educ. Knowl., 4: 10.

Clarke, K.R.; Gorley, R.N., (2006). Plymouth Routines in Multivariate Ecological Research version six (PRIMER 6). User Manual/Tutorial. PRIMER-E, Plymouth, UK, pp. 192.

CPCB, (2008). Guidelines for water quality monitoring, MINARS/27/2007–08, Central Pollution Control Board, Parivesh Bhawan, East Arjun Nagar, New Delhi, pp. 35.

Dodds, W.; Whites, M., (2010). Freshwater Ecology: Concepts and Environmental Applications of Limnology. Academic Press, Burlington, MA, USA, pp. 829.

Dudley, B.; Dunbar, M.; Penning, E.; Kolada, A.; Hellsten, S.; Oggioni, A.; Bertrin, V.; Ecke, F.; Søndergaard, M., (2013). Measurements of uncertainty in macrophyte metrics used to assess European lake water quality. Hydrobiologia, 704(1): 179–191 (13 pages).

Dupas, R.; Delmas, M.; Dorioz, J.M.; Garnier, J.; Moatar, F.; Gascuel-Odoux, C., (2015). Assessing the impact of agricultural pressures on N and P loads and eutrophication risk. Ecol. Indic. 48: 396–407 (5 pages).

Fang, Y.Y.; Yang, X.E.; Pu, P.M.; Chang, H.Q.; Ding, X.F., (2004). Water eutrophication in Li-Yang reservoir and its ecological remediation counter measures. J. Soil Water Conserv. 18:183–186 (4 pages).

Fataei, E., (2011). Assessment of surface water quality using principle component analysis and factor analysis. World J. Fish Mar. Sci. 3: 159–166 (8 pages).

Grasshoff, K.; Ehrhardt, M.; Kremling, K.; (1983). Methods of Sea Water Analysis, Verlag Chamie, Weinheim, New York, pp. 577.

Hails, A.J., (1996). Wetlands, Biodiversity and Ramsar Convention: the role of the convention wetlands in the conservation and wise use of biodiversity. Ramsar Convention Bureau, Gland, Switzerland, pp. 196.

Jagadeesan, L.; Manju, M.; Perumal, P.; Anantharaman, P., (2011). Temporal variations of water quality characteristics and their principal sources in tropical Vellar estuary, South east coast of India. Rese. J. Environ. Sci. 5: 703–711 (9 pages).

Jain, C.K.; Singhal, D.C.; Sharma, M.K., (2002). Survey and characterization of waste effluents polluting river Hindon. Indian J. Environ. Protec. 22: 792–799 (8 pages).

Kupfer, J.A.; Gao, P., (2011). Spatial patterns of ecological integrity in South Carolina Watersheds. Southeastern Geographer, 51:394-410 (7 pages).

Li, L.F.; Zeng, X.B.; Li, G.X.; Mei, X.R., (2014). Surface water quality assessment in Beijing (China), using GIS-based mapping and multivariate statistical techniques. Adv. Mater. Res., 955: 1514–1526 (5 pages).

Lokhande, R.S.; Singare, P.U.; Pimple, D.S., (2011). Study on Physico-chemical Parameters of Waste Water Effluents from Taloja Industrial Area of Mumbai, India. Int. J. Ecosyst., 1: 1–9 (5 pages).

Mahadev, J.; Hosamani, S.P.; Ahmed, S.A., (2010). Statistical multivariate analysis of lakes water quality parameters in Mysore, Karnataka, India. World Applied Sciences Journal, 8: 13701380 (11 pages).

Marco, A.; Quilchano, C.; Blaustein, A.R., (1999). Sensitivity to nitrate and nitrite in pond-breeding amphibians from the Pacific Northwest, USA. Environ. Toxicol. Chem. 18: 2836–2839 (4 pages).

Phung, D.; Huang, C.; Rutherford, S.;  Dwirahmadi, F.; Chu, C.; Wang, X.; Nguyen, M.; Nguyen, N.H.; Do, C.M.; Nguyen, T.H.; Dinh, T.A.D., (2015). Temporal and spatial assessment of river surface water quality using multivariate statistical techniques: a study in Can Tho City, a Mekong Delta area, Vietnam. Environ. Monit. Assess. 187(5): 1–13 (13 pages).

Rabalais, N.N.; Turner, R.E.; Díaz, R.J.; Justić, D.; (2009). Global change and eutrophication of coastal waters. – ICES J. Mar. Sci. 66: 1528–1537 (10 pages).

Ramachandra, T.V.; Solanki, M., (2007). Ecological assessment of lentic water bodies of Bangalore Envis, Technical Report: 25, Environmental information system, ENVIS, Centre for Ecological Sciences, Indian Institute of Science, Bangalore, pp. 105.

Reddy, M.S.; Char, N.V.V., (2006). Management of lakes in India. Lakes Reservoirs: Res. Manage., 11, 227–237 (11 pages).

Reghunath, R.; Murthy, T.R.S.; Raghavan, B.R., (2002). The utility of multivariate statistical techniques in hydrogeochemical studies: an example from Karnataka, India. Water Res. 36: 2437–2442 (6 pages).

Salah, E.A.M.; Turki, A.M.; Al-Othman, E.M., (2012). Assessment of water quality of Euphrates river using cluster analysis. J. Environ. Protec. 3: 1629–1633 (5 pages).

Satheeshkumar, P.; Khan, A. B., (2011). Identification of mangrove water quality by multivariate statistical analysis methods in Pondicherry coast, India. Environ. Monitor. Assess., 182:443–454 (12 pages).

Schallenberg, M.; de Winton, M.D.; Verburg, P.; Kelly, D.J.; Hamill, K.D.; Hamilton, D.P., (2013). Ecosystem services of lakes. In: Dymond, J. R. (Ed.), pp.115–225. Ecosystem services in New Zealand – conditions and trends. Manaaki Whenua Press, Lincoln, New Zealand.

Sharma, A.S.C.; Gupta, S.; Singh, N.R., (2013). Studies on the physico-chemical parameters in water of Keibul Lamjao National Park, Manipur, India. J. Environ. Biol. 34: 1019–1025 (7 pages).

Sheela, A.M.; Letha, J.; Joseph, S., (2011). Environmental status of a tropical lake system. Environ. Monit. Assess. 180: 427–49 (23 pages).

Sheela, A.M.; Letha, J.; Joseph, S.; Chacko, M.; Sanalkumar, S.P; Thomas, J., (2012). Water quality assessment of a tropical coastal lake system using multivariate-cluster, principal component and factor analysis. Lakes Reservoirs Res. Manage., 17:143–159 (17 pages). 

Simeonov, V.J.; Stratis C.J.; Samara, G.J.; Zachariadis, D.; Voutsa, A.; Anthemidis, M.; Sofriniou, T.; Koumtzis, T., (2003). Assessment of the surface water quality in Northern Greece. Water Res. 37: 4119–4124 (6 pages).

Singh, K.P.; Malik, A.; Mohan, D.; Sinha, S., (2004). Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—a case study. Water Res. 38: 3980–3992 (13 pages).

Smith, V.H., (2006). Responses of estuarine and coastal marine phytoplankton to nitrogen and phosphorus enrichment. Limnol. Oceanogr. 51: 377–384 (8 pages).

Strickland, J.D.H.;  Parsons, T.R.,  (1972). A practical hand-book of seawater analysis. Bull. Fish. Res. Board of Canada, pp. 310.

Sujatha, C.H.; Benny, N.; Raveendran, R.; Fanimol, C.L; Samantha, N.K.; (2009). Nutrient dynamics in the two lakes of kerala, India. (2009). Indian J. Mar. Sci. 38: 451-456 (6 pages).

Tijani, M.N.; Balogun, S.A.; Adeleye, M.A., (2005). Chemical and microbiological assessment of water and bottom-sediments  contaminations in Awba  Lake  (U.I),  Ibadan,  SW Nigeria.  RMZ- Mate. Geoenviron. 52: 123–126 (4 pages).

Tiner, R.W., (1999). Wetland Indicators. Lewis. New York, USA, pp. 392.

Upadhyay,R.; Dasgupta, N.; Hasan, A.; Upadhyay, S.K., (2011). Managing water quality of River Yamuna in NCR Delhi. Physics and Chemistry of the Earth, 36: 372–378 (7 pages).

USEPA, (2001). Parameters of Water Quality: Interpretation and Standards. Published by EPA, Ireland, pp. 132.

Verma, P.; Chandawat, D.; Gupta, U.; Solanki, H., (2012). Water quality analysis of an organically polluted lake by investigating different physical and chemical parameters. Int. J. Res. Chem. Environ. 2: 105–111 (7 pages).

Wang, L.: Wang, Y.: Zhang, W.: Xu, C.; An, Z., (2014). Multivariate statistical techniques for evaluating and identifying the environmental significance of heavy metal contamination in sediments of the Yangtze River, China. Environ. Earth Sci. 71(3): 1183–1193 (11 pages).

Wang, Y.S.; Lou, Z.P.; Sun, C.C.; Wu, M.L.; Han, S.H., (2006). Multivariate statistical analysis of water quality and phytoplankton characteristics in Daya Bay, China, from 1999 to 2002. Oceanologia, 48: 193–211 (19 pages).

Wetzel, R.G.; Likens, G.E., (2000). Limnological Analyses (3d ed.), Springer-Verlag, New York, pp. 429.

Wetzel, R.G., (2001). Limnology: Lake and River Ecosystems. 3rd Ed., San Diego, Academic Press, California, pp. 1006.

Woodward, G., (2009). Biodiversity, ecosystem functioning and food webs in fresh waters: assembling the jigsaw puzzle. Freshwater Biol. 54: 2171–2187 (16 pages).

Zali, M.A.; Retnam, A.; Juahir, H., (2011). Spatial characterization of water quality using principal component analysis approach at Juru River Basin, Malaysia. World Appl. Sci. J. 14: 55–59 (5 pages).

Letters to Editor

GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.