1 Chemistry Department, Faculty of Science, Cairo University, Cairo, Egypt

2 Regional Center for Food and Feed, Agricultural Research Center, Giza, Egypt

3 Science and Technology Centerof Excellence, Ministry of Military Production, Cairo, Egypt


In the present study, different activated carbons were prepared from carbonized African beech wood sawdust by potassium hydroxide activation. The activated carbons were characterized by brunauer–emmett–teller, scanning electron microscope, fourier transform infrared spectroscopy, and thermogravimetric analyzer. The phenol adsorption capacity of the prepared carbons was evaluated. The different factors affecting phenol’s removal were studied including: contact time, solution pH and initial phenol concentration. The optimum phenol removal was obtained after a contact time of 300 min. and at an initial phenol solution pH 7. The maximum removal percentages were determined at 5mg/l initial phenol concentration as 79, 93, 94 and 98% for AC0, AC1, AC2 and AC3; respectively. The adsorption of phenol on African beech sawdust activated carbons was found to follow the Lagergren first order kinetics and the intraparticle diffusion mechanism gave a good fit to the experimental data. The isothermal models applied fitted the experimental data in the order: Langmuir> Dubinin–Radushkevich> Freundlich and Temkin.

Graphical Abstract

Preparation, characterization and phenol adsorption capacity of activated carbons from African beech wood sawdust


  • Production of porous  activated carbons from African beech wood sawdust
  • Enabling potassium hydroxide chemical activation production of highly effective adsorbents
  • High surface area carbons ranging from 1236.8 to 1553.8 m2/g
  • Effective removal of phenol from aqueous solutionsby activated carbons
  • Illustration of effectiveness and applicability of the research work


Main Subjects

Abdel-Ghani, N.T.; Hegazy, A.K.; El-Chaghaby, G.A., (2009). Typha domingensis leaf powder for decontamination of aluminium, iron, zinc and lead: Biosorption kinetics and equilibrium modeling. Int. J. Environ. Sci. Technol. 6: 243-248 (6 pages). doi:10.1007/BF03327628
Adinata, D.; Daud W.M.A.W.; Aroua M.K., (2007). Preparation and characterization of activated carbon from palm shell by chemical activation with K2CO3. Bioresour. Tech. 98:145–149 (5 pages).
Ahmaruzzaman, M.; Sharma, D.K., (2005). Adsorption of phenols from wastewater. J. Colloid Interface Sci. 287:14–24 (11 pages). doi:10.1016/j.jcis.2005.01.075
Aksu, Z. ; Kabasakal E., (2004). Batch adsorption of 2,4-dichlorophenoxy-acetic acid (2,4- D) from aqueous solution by granular activated carbon. Sep. Purif. Technol. 35: 223-240 (18 pages). doi:10.1016/S1383-5866(03)00144-8
Aksu, Z.; Yener J., (2001). A comparative adsorption/biosorption study of monochlorinated phenols onto various sorbents. Waste Manag. 21:695-702 (8 pages).
Asadullah, M.; Asaduzzaman, M.; Kabir, M. S.; Mostofa, M. G.; Miyazawa, T., (2009). Chemical and structural evaluation of activated carbon prepared from jutesticks for Brilliant Green dye removal from aqueous solution. J. Hazard. Mater. 174:437-443 (7 pages).
Beker, U.; Ganbold, B.; Dertli, H.; Gülbayir, D.D., (2010). Adsorption of phenol by activated carbon: Influence of activation methods and solution pH. Energ. Convers. Manage. 51: 235–240 (6 pages). doi:10.1016/j.enconman.2009.08.035
Daifullah,  A.A.M. ; Girgis, B.S., (1998). Removal of some substituted phenols by activated carbon obtained from agricultural waste. Water Res. 32: 1169–1177 (9 pages).
Demirbas, E.; Dizge, N.; Sulak, M.T.; Kobya, M., (2009). Adsorption kinetics and equilibrium of copper from aqueous solutions using hazelnut shell activated carbon, Chem. Eng. J., 148: 480–487(8 pages).
Dubinin, M.M.; Radushkevich, L.V., (1947). Equation of the characteristic curve of activated charcoal, Proceedings of the Academy of Sciences, Physical Chemistry Section, U.S.S.R., 55: 331-333 (3 pages).
El-Hendawy, A. A., (2009). An insight into the KOH activation mechanism through the production of microporous activated carbon for the removal of Pb2+ cations. Appl. Surf. Sci. 255: 3723–3730 (8 pages).doi:10.1016/j.apsusc.2008.10.034
El-Naas, M. H. ; Al-Zuhair S. ; Manal Abu Alhaija, (2010). Removal of phenol from petroleum refinery wastewater through adsorption on date-pit activated carbon. Chem. Eng. J. 162:997–1005 (9 pages). doi:10.1016/j.cej.2010.07.007
Freundlich, H.M.F., (1906), Uber die adsorption in losungen, Zeitschrift für Physikalische Chemie (Leipzig), 57A:385-470 (6 pages).
Galiatsatou, P. ; Metaxas, M. ; Kasseloui-Rigopoulou, V., (2001). Mesopores activated carbon from agricultural by products. Mikrochimica Acta. 136(3): 147-152 (6 pages).
Gupta S. S., Bhattacharyya K. G., (2011). Kinetics of adsorption of metal ions on inorganic materials: A review. Adv. Colloid. Interfac. 162: 39–58 (10 pages).
Hall, K.R.; Eagleton, L.C.; Acrivos, A. ; Vermeulen, T., (1966). Pore and solid diffusion kinetics in fixed-bed adsorption under constant pattern conditions.Ind. Eng. Chem. Fund. 5: 212–223 (2 pages).
Hameed, B.H.; Daud, F.B.M., (2008). Adsorption studies of basic dye on activated carbon derived from agricultural waste: Hevea brasiliensis seed coat.Chem. Eng. J.139: 48–55 (8 pages).
Hameed, B.H.; Din, A.T.M.; Ahmadm, A.L., (2007). Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies. J. Hazard. Mater. 141: 819-825 (7 pages).
Hanafiah, M.A.; Ngah, W.S.; Zolkafly, S.H.; Teong, L.C.; Majid, Z.A., (2012). Acid Blue 25 adsorption on base treated Shorea dasyphylla sawdust: Kinetic, isotherm, thermodynamic and spectroscopic analysis. J. Environ. Sci. 24: 261–268 (8 pages).
Ho, Y.S.; McKay, G., (1998). The kinetics of sorption of basic dyes from aqueous solutions by sphagnum moss peat. Can. J. Chem. Eng. 76: 822–827 (6 pages).
Hu,  Z.; Srinivasan, M.P., (1999). Preparation of high-surface-area activated carbons from coconut shell,  Micropor. Mesopor. Mat. 27: 11–18 (8 pages).
Ioannidou, O.; Zabaniotou, A., (2007). Agricultural residues as precursors for activated carbon production: A review. Renew. Sustainable Energ. Rev.11: 1966–2005 (10 pages).
Jain, M.; Garg, V. K.; Kadirvelu, K., (2010). Adsorption of hexavalent chromium from aqueous medium onto carbonaceous adsorbents prepared from waste biomas. J. Environ. Manage. 91: 949–957 (8 pages).
Jibril, B. Y. ; Al-Maamari, R. S. ; Hegde, G. ; Al-Mandhary, N. ; Houache, O., (2007). Effects of feedstock pre-drying on carbonization of KOH-mixed bituminous coal in preparation of activated carbon. J. Anal. Appl. Pyrol. 80:277-282 (6 pages).
Juang, R.S.; Wu, F.C.; Tseng, R.L., (2002). Characterization and use of activated carbons prepared from bagasses for liquid-phase adsorption. Colloid. Surface A. 201:191–199 (10 pages).
Kalavathy, H. ; Karthik, B. ; Miranda, L. R., (2010). Removal and recovery of Ni and Zn from aqueous solution using activated carbon from Hevea brasiliensis: Batch and column studies. Colloid. Surface B. 78: 291–302 (12 pages).
Kalderis, D.; Bethanis, S.; Paraskeva, P.; Diamadopoulos, E., (2008). Production of activated carbon from bagasse and rice husk by a single-stage chemical activation method at low retention times, Bioresour. Tech. 99:6809–6816 (18 pages).
Karagozoglu, B. ; Tasdemir, M. ; Demirbas, E. ; Kobya, M., (2007). The adsorption of basic dye (Astrazon Blue FGRL) from aqueous solutions onto sepiolite, fly ash and apricot shell activated carbon: kinetic and equilibrium studies. J. Hazard. Mater. 147:297–306 (10 pages).
Kilic, M.; Apaydin-Varol, E.; Pütün, A. E., (2011). Adsorptive removal of phenol from aqueous solutions on activated carbon prepared from tobacco residues: Equilibrium, kinetics and thermodynamics. J. Hazard. Mater. 189:397–403 (7 pages).
Kumar, P. B.G.; Shivakamy, K.; Miranda, L. R.; Velan, M., (2006). Preparation of steam activated carbon from rubberwood sawdust (Hevea brasiliensis) and its adsorption kinetics. J. Hazard. Mater. 136: 922-929 (8 pages).
Lagergren, S., (1898). Kungliga Svenska Vetenskapsakademiens. Handlingar. 24:31-39 (10 pages).
Langmuir, I., (1916). The constitution and fundamental properties of solids and liquids, J. Am. Chem. Soc. 38: 2221-2295 (6 pages).
Lin, S.H.; Cheng, Y.H.J., (1999). Adsorption of BTEX from aqueous solutions by macro reticular resins. J. Hazard. Mater. 70:21-37 (7 pages).
Ljupković,  R.B.; Mitrović,  J.; Radović,  M.; Kostić,  M.; Bojić,  D.; Mitić-Stojanović,  D-L.; Bojić, A.Lj., (2011). Removal Cu(II) ions from water using sulphuric acid treated Lagenaria vulgaris Shell. Biologica Nyssana.2: 85-89 (5 pages).
Low, K.S.; Lee, C.K.; Liew, S.C., (2007). Sorption of cadmium and lead from aqueous solutions by spent grain. Process Biochem. 36: 59-64 (6 pages).
Mattson, J.S.; Mark, Jr. H.B.; Malbin, M.D.; Weber, I.W.J.; Crittenden, J. C., (1969). Surface chemistry of active carbon: Specific adsorption of phenols, J. Colloid. Interf. Sci. 31: 116-130 (15 pages).
Mohanty, K.; Das, D.; Biswas, M.N., (2005). Adsorption of phenol from aqueous solutions using activated carbons prepared from Tectona grandis sawdust by ZnCl2 activation. Chem. Eng. J. 115:121–131 (11 pages). doi:10.1016/j.cej.2005.09.016
Moreno-Castilla, C., (2004). Adsorption of organic molecules from aqueous solutions on carbon materials, Carbon, 42: 83-94 (12 pages).
Nadavala, S. K.; Swayampakula, K.; Boddu, V.M.; Abburim, K., (2009). Biosorption of phenol and o-chlorophenol from aqueous solutions onto chitosan–calcium alginate blended beads, J. Hazard. Mater.162:482–489 (8 pages).
Nagda, G. K.; Diwan,  A. M.; Ghole, V. S., (2007). Potential of tendu leaf refuse for phenol removal in aqueous systems. Appl. Ecol. Environ. Res. 5: 1-9 (9 pages).
Naiya, T. K. ; Chowdhury, P. ; Kumar, B. A. ; Kumar, D. S., (2009). Saw dust and neem bark as low cost natural biosorbent for adsorptive removal of Zn(II) and Cd(II) ions from aqueous solutions. Chem. Eng. J. 148: 68–79 (12 pages).
Onal, Y.; Akmil-Başar, C.; Sarici-Ozdemir, C.; Erdogan, S., (2007). Textural development of sugar beet bagasse activated with ZnCl2. J. Hazard. Mater. 142:138–143 (6 pages).
Podkoscielny, P.; Dabrowski, A.; Marijuk, O.V., (2003). Heterogeneity of activated carbons in adsorption of phenol aqueous solutions. Appl. Surf. Sci. 205: 297-303 (7 pages).
Rengaraj, S.; Moon, S.H.; Sivabalan, R.; Arabindoo, B.; Murugesan, V., (2002). Removal of phenol from aqueous solution and resin manufacturing industry wastewater using an agricultural waste: rubber seed coat. J. Hazard. Mater. 89 :185-196 (12 pages).
Sabio, E.; González-Martın, M.L.; Ramiro, A.; González, J.F.; Bruque, J.M.; Labajos-Broncano, L.; Encinar, J.M., (2001). Influence of regeneration temperature on the phenols adsorption on activated carbon. J. Colloid Interf. Sci. 242: 31- 35 (5 pages).
Seey, T.L.; Kassim M.J.N.M., (2012). Characterization of mangrove bark adsorbent and its application in the removal of textile dyes from aqueous solutions.  J. Appl. Phytotechnol. Environ. Sanit. 1: 121-130 (10 pages).
Singh,  K.P.; Malik, A.; Sinha, S., Ojha P., (2008). Liquid-phase adsorption of phenols using activated carbons derived from agricultural waste material. J. Hazard. Mater.150: 626–641 (16 pages).
Tan,  I.A.W.; Hameed, B.H.; Ahmad, A.L., (2007). Equilibrium and kinetic studies on basic dye adsorption by oil palm fibre activated carbon. Chem. Eng. J. 127: 111–119 (10 pages).
Tan, I.A.W.; Ahmad, A.L.; Hameed, B.H., (2008). Adsorption of basic dye on high surface area activated carbon prepared from coconut husk: equilibrium, kinetic and thermodynamic studies. J. Hazard. Mater. 154: 337-346 (10 pages).
Tan, I.A.W.;  Ahmad, A.L.; Hameed, B.H., (2009). Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon. J. Hazard. Mater. 164: 473-482 (10 pages).
Temkin, M.I., (1941). Adsorption equilibrium and the kinetics of processes on non homogeneous surfaces and in the interaction between adsorbed molecules, Zhurnal Fizicheskoi Khimii, 15: 296–332 (7 pages).
Thinakaran, N.; Baskaralingam, P.; Pulikesi, M.; Panneerselvam, P.; Sivanesan, S., (2008). Removal of Acid Violet 17 from aqueous solutions by adsorption onto activated carbon prepared from sunflower seed hull. J. Hazard. Mater. 151:316–322 (7 pages).
Tseng, R.L.; Tseng, S.K., (2005). Pore structure and adsorption performance of the KOH activated carbons prepared from corncob. J. Colloid Interf. Sci. 287: 428–437 (10 pages).
Unlu, N.; Ersoz, M., (2006), Adsorption characteristics of heavy metal ions onto a low cost biopolymeric sorbent from aqueous solutions. J. Hazard. Mater. B136: 272–280 (9 pages).
Wan Ngah, W.S.; Fatinathan, S., (2008). Adsorption of Cu(II) ions in aqueous solution using chitosan beads, chitosan–GLA beads and chitosan–alginate beads. Chem.Eng. J. 143: 62–72 (11 pages).
Weber, W.J.;  Morris, J.C., (1963).  Kinetics of adsorption on carbon from solutions, J. Sanit. Eng. Div. 89: 31–60 (30 pages).
Wu, F.C.; Tseng, R.L.;  Juang, R. S., (2005). Preparation of highly microporous carbons from fir wood by KOH activation for adsorption of dyes and phenols from water. Sep. Purif. Tech. 47: 10-19 (10 pages).
Yan, J.; Quan, G. , (2009). Equilibrium and kinetic studies of phenol sorption by chitosan coated montmorillonite. J. Chil. Chem. Soc. 54: 73-76 (4 pages).

Letters to Editor

GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.