Document Type : CASE STUDY


Department of Environmental Planning, Management and Education, Faculty of Environment, University of Tehran, P.O. Box 14135, Tehran, Iran


This study recommends a GIS-based (Geographic Information Systems) and multi-criteria evaluation for site selection of gas power plant in Natanz City of Iran. The multi-criteria decision framework integrates legal requirements and physical constraints related to environmental and economic concerns. It also builds a hierarchy model for gas power plant suitability. The methodologies used for site selection include analytic hierarchy process (AHP), fuzzy set theory and weighted linear combination. The AHP (analytic hierarchy process) is a multi-criteria approach which is used to establish the relative importance of criteria. The AHP makes pair-wise comparisons of relative importance between hierarchy elements categorized by environmental decision criteria. In the next step, the fuzzy set theory is used to standardize criteria through different fuzzy membership functions and fuzzy layers are formed by using fuzzy operators in ArcGIS environment. Subsequently, they are categorized into 6 classes using Reclassify Function. Weighted linear combination is used to combine the criteria layers. Finally, the two approaches are analyzed in order to locate the most suitable site to establish a gas power plant. According to the results, using GAMMA fuzzy operator is considered suitable for this site selection.

Graphical Abstract

A geographic information system for gas power plant location using analytical hierarchy process and fuzzy logic


  • GIS-based and multi-criteria evaluation for site selection of a gas power plant
  • Integration of legal requirements and physical constraints related to environmental and economic concerns by multi-criteria decision framework
  • Considering GAMMA fuzzy operator as a suitable choice to use in this type of site selection


Aberbakh, I.; Berman, O., (1995). Probabilistic sales delivery man and sales delivery facility location problems on a tree. Transport. Sci., 29: 184–195 (12 pages).
Akash, B.A.; Mamlook, R.; Mohsen, M.S., (1999). Multi-criteria selection of electric power plants using analytical hierarchy process. Electric Power Syst. Res., 52(1): 29-35 (7 pages).
Alavipoor, F.S.; Ghorbaninia, Z.; Karimi, S.; Jafari H., (2016). Surface Water Contamination Risk Assessment Modeled by Fuzzy-WRASTIC. Water Environ. Res., 88: 55-68 (14 pages).
Alipour, M.H.; Shamsai, A.; Ahmady, N., (2010). A new fuzzy multi-criteria decision-making method and its application in diversion of water. Expert Systems with Applications, 37: 8809–8813 (5 pages).
Ayağ, Z.; Özdemir, R. G., (2006). A fuzzy AHP approach to evaluating machine tool alternatives. Journal of Intelligent Manufacturing. 17(2): 179-190 (12 pages).
Ban, A. I.; Ban, O. I., (2012). Optimization and extensions of a fuzzy multi-criteria decision-making method and applications to selection of touristic destinations. Expert Syst. Appl., 39(8): 7216-7225 (10 pages).
Bellman, R.E.; Zadeh, L.A., (1970). Decision-making in a fuzzy environment. Manage. Sci., 17: 141–164 (24 pages).
Berry, J. K., (1993). Cartographic modeling: The analytical capabilities of GIS. Environ. Model.  GIS, 58-74 (17 pages).
Carver, S. J., (1991). Integrating multi-criteria evaluation with geographical information systems. Int. J. Geogr. Info. Syst., 5(3): 321-339 (19 pages).
Chang, Y.C., Chu, P.C., Tseng, R.S., (2015). Site selection of ocean current power generation from drifter measurements. Renew. Energ., 80: 737-745 (17 pages).
Chang, Y.H.; Hsu, T.H.; Chen, S.L., (1997). Evaluation process in selecting airport location. Transport. Plan. J. 26(1): 37–68 (32 pages).
Chen, C.T., (2001). A fuzzy approach to select the location of the distribution center. Fuzzy Set Syst. 118: 65–73 (8 pages).
Chen, S.M.; Niou, S.H., (2011). Fuzzy multiple attributes group decision-making based on fuzzy induced OWA operators. Expert Syst. Appl., 38: 4097–4108 (12 pages).
Chou, T.Y.; Hsu, C. L.; Chen, M.C., (2008). A fuzzy multi-criteria decision model for international tourist hotels location selection. Int. J. Hosp. Manage., 27(2): 293-301 (9 pages).
Chu, T.C.; Lin, Y., (2009). An extension to fuzzy MCDM. Comput. Math. Appl., 57: 445–454 (9 pages).
Dombi, J., (1990). Membership function as an evaluation. Fuzzy sets Syst., 35 (1): 1-21 (22 pages).
Donevska, K.R.; Gorsevski, P.V.; Jovanovski, M.; Peševski, I., (2012). Regional non-hazardous landfill site selection by integrating fuzzy logic, AHP and geographic information systems. Environ. Earth Sci., 67 (1): 121-131 (11 pages).
Durbach, I.; Lahdelma, R.; Salminen, P., (2014). The analytic hierarchy process with stochastic judgements. Eur. J. Oper. Res., 238(2): 552-559 (8 pages).
Eastman, J.R., (2012). IDRISI Selva manual. Clark University.
Fu, G., (2008). A fuzzy optimization method for multi-criteria decision-making: An application to reservoir flood control operation. Expert Syst. Appl., 34: 147–149 (3 pages).
Ghosh, J.K.; Bhattacharya, D.; Sharma, S. K., (2012). Fuzzy knowledge based GIS for zonation of landslide susceptibility. In applications of chaos and nonlinear dynamics in science and engineering, 2: 21-37 (18 pages).
Hadipour, M.; Kishani, M., (2014). Environmental location planning of industrial zones using up and goes into Arak city, Iran. In International conference on multidisciplinary innovation for sustainability and growth, 1: 109-114 (18 pages).
Hansen, H. S., (2005). GIS-based multi-criteria analysis of wind farm development. In Scan-GIS 2005: Scandinavian Research Conference on Geographical Information Science, 75-87 (13 pages).
Heywood, I.; Oliver, J.; Tomlinson, S., (1995). Building an exploratory multi-criteria modelling environment for spatial decision support. Innov. GIS, 2: 127-136 (10 pages).
Hossain, M. S.; Chowdhury, S.R.; Das, N.G.; Shari-fuzzaman, S.M.; Sultana, A., (2008). Integration of GIS and multi-criteria decision analysis for urban aquaculture development in Bangladesh. Landscape Urban Plan., 90 (3): 119-133 (15 pages).
Jafari, H.; Karimi, S.; Nahavandchi, M.; Balist, J., (2015). Nuclear power plant locating by WLC and GIS: Case study: Iran, Hormozgan Province. Int. J. Basic Appl. Sci., 4(1): 132-139 (8 pages).
Kabir, S.; Edifor, E.; Walker, M.; Gordon, N., (2014). Quantification of temporal fault trees based on fuzzy set theory. In proceedings of the Ninth International Conference on Dependability and Complex Systems. DepCoS-RELCOMEX. June 30–July 4, 2014, Brunów, Poland, Springer Publiser, 255-264 (10 pages).
Kahraman, C.; Kaya, I., (2010). A fuzzy multi-criteria, methodology for selection among energy alternatives. Expert Syst. Appl., 37: 6270–6281 (12 pages).
Karimi, S.; Alavipoor, F.S.; Foroughi, N.; Nahavandchi, M.; Khakian, A., (2014). Environmental impact assessment of gas pipeline transmission: Case study: Duzduzan–Ahar. Current World Environ., 9 (3): 686-694 (9 pages).
Krohling, R.A.; Campanharo, V.C., (2011). Fuzzy TOPSIS for group decision-making: A case study for accidents with oil spill in the sea. Expert Syst. Appl., 38: 4190–4197 (8 pages).
Kuo, R.J.; Chi, S.C.; Kao, S.S., (2002). A decision support system for selecting a convenience store location through the integration of fuzzy AHP and artificial neural network. Comput. Ind., 47: 199–214 (8 pages).  
Lee, S., (2007). Application and verification of fuzzy algebraic operators to landslide susceptibility mapping. Environ. Geol., 52 (4): 615-623 (9 pages). 
Lewis, S.M.; Fitts, G.; Kelly, M.; Dale, L., (2014). A fuzzy logic-based spatial suitability model for drought tolerant switchgrass in the United States. Comput. Electr. Agr., 103: 39-47 (9 pages). 
Liu, Q.; Wang, S.; Zhang, H., (2014). Determination method of piecewise linear membership function based on the interval density cluster. Data mining for providing personalized learning material with interactive, 2(1): 29-32 (4 pages).
Malczewski, J., (1996). A GIS-based approach to multiple criteria group decision making. Int. J. Geogr. Info. Syst., 10 (8): 955–971 (17 pages). 
Malczewski, J., (1997). Propagation of errors in multi-criteria location analysis: A case study. In G. Fandel and T. Gal (Eds.), multiple criteria decision-making, Berlin: Springer, 448: 154-155 (2 pages).  
Malczewski, J., (2000). On the use of weighted linear combination method in GIS: common and best practice approaches. T. GIS, 4(1): 5-22 (18 pages).   
Mokhtarian, M.N., (2011). A new fuzzy weighted average (FWA) method based on left and right scores: An application for determining a suitable location for a gas oil station. Comput. Math. Appl., 61 (10): 3136-3145 (10 pages).  
Navas, J.M.; Telfer, T.C.; Ross, L.G., (2011). Spatial modeling of environmental vulnerability of marine finfish aquaculture using GIS-based neuro-fuzzy techniques. Mar. Pollut. Bull., 62 (8): 1786-1799 (14 pages). 
Olufemi, A.O.; Brandon, R.B.; Warren, C.J.; Gary, T.M.; Randy, B.; Stanton, W.H.; Thomas, J.H.; Budhendra, L.B.; Bradley, S.N.; Amy, N.R., (2012). Adapting a GIS-based multi-criteria decision analysis approach for evaluating new power generating sites. Appl. Energ., 96: 292-301 (10 pages).  
Pereira, J.M.C.; Duckstein, L., (1993). A multiple criteria decision-making approach to GIS-based land suitability evaluation. Int. J. Geogr. Info. Syst., 7(5): 407–424 (18 pages).  
Rahman, M.A.; Rusteberg, B.; Gogu, R.C.; Lobo Ferreira, J.P.; Sauter, M., (2012). A new spatial multi-criteria decision support tool for site selection for implementation of managed aquifer recharge. J. Environ. Manage., 99: 61-75 (15 pages).  
Saaty, T.L., (1980). The analytic hierarchy process. McGraw-Hill, New York.
Semih, T.; Seyhan, S., (2011). A multi-criteria factor evaluation model for gas power plant site selection. J. Global Manage., 2(1): 12-21 (9 pages).  
Silva, S.; Alçada-Almeida, L.; Dias, L. C., (2014). Biogas plants site selection integrating multi-criteria decision aid methods and GIS techniques: A case study in a Portuguese region. Biomass  Bioenerg., 71: 58-68 (11 pages).   
Tchobanoglous, G.; Theisen, H.; Vigil, S.A., (1993). Integrated solid waste management. Engineering Principles and Management Issues. McGraw-Hill, NewYork, USA.
Teng, M.H., (2000). Application of multi-criteria decision-making for site selection of restaurants: case study of Pao-San restaurant. J. Living Sci., 6: 47–62 (16 pages).   
Tomlin, C.D., (1990). Geographical information systems and cartographic modeling. Englewood Cliffs, NJ, Prentice-Hall.
Tzeng, G.H.; Teng, M.H.; Chen, J.J.; Opricovic, S., (2002). Multi-criteria selection for a restaurant location in Taipei. Int. J. Hosp. Manage., 21: 171–187 (17 pages).   
Uyan, M., (2013). GIS-based solar farms site selection using analytic hierarchy process (AHP) in Karapinar region, Konya/Turkey. Renew. Sustain. Energ. Rev., 28: 11-17 (7 pages).   
Vatalis, K.; Manoliadis, O., (2002). A two-level multi-criteria DSS for landfill site selection using GIS: Case study in Western Macedonia, Greece. J. Geogr. Info. Decision Anal., 6 (1): 49–56 (8 pages).   
Voogd, H., (1983). Multi-criteria evaluation for urban and regional planning. Pion, Ltd., London.
Wood, L.J.; Dragicevic, S., (2007). GIS-based multi-criteria evaluation and fuzzy sets to identify priority sites for marine protection. Biodivers. Conserv., 16: 2539–2558 (20 pages).    
Ye, J., (2010). Using an improved measure function of vague sets for multi-criteria fuzzy decision-making. Expert Syst. Appl., 37: 4706–4709 (4 pages).    
Yeh, C.H.; Kuo, Y.L., (2003). Evaluating passenger services of Asia-Pacific international airports. Transport. Res., Part E:, 39: 35–48 (14 pages).    
Zadeh, L., (1965). Fuzzy sets. Inform. Cont., 8: 338–353 (16 pages).

Letters to Editor

GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.