1 Procurement Head, Tega Industries South Africa Pty Ltd, 2 Uranium Road, Vulcania, Brakpan-1541, South Africa

2 Scientific Officer, Aquacheck Kolkata Laboratory, Water Quality Research Center, EFL, P/1J, Survey Park, Ajaynagar, Kolkata-700075, W.B, India

3 HOD Science and PGT Chemistry, ST. Xaviers School, Balia, U.P, India.


In recent years managing solid wastes has been one of the burning problems in front of state and local municipal authorities. This is mainly due to scarcity of lands for landfill sites. In this context experts suggest that conversion of solid waste to energy and useful component is the best approach to reduce space and public health related problems. The entire process has to be managed by technologies that prevent pollution and protect the environment and at the same time minimize the cost through recovery of energy. Energy recovery in the form of electricity, heat and fuel from the waste using different technologies is possible through a variety of processes, including incineration, gasification, pyrolysis and anaerobic digestion. These processes are often grouped under “Waste to Energy technologies”. The objective of the study is twofold. First authors assessed the current status of solid waste management practices in India. Secondly the leading barriers are identified and Interpretive structural modeling technique and MICMAC analysis is performed to identify the contextual interrelationships between leading barriers influencing the solid waste to energy programs in the country. Finally the conclusions are drawn which will assist policy makers in designing sustainable waste management programs.

Graphical Abstract

Modeling barriers of solid waste to energy practices: An Indian perspective


  • Sssessing the current status of solid waste management to energy practices
  • Investigate the underlying reasons for shut down of most of the waste to energy plants
  • ISM and MICMAC analysis is performed


Main Subjects

Akinbami, J. F.; Ilori, M. O.; Oyebisi, T. O.; Akinwumi, I. O.; Adeoti, O., (2001). Biogas energy use in Nigeria: current status, future prospects and policy implications. Renew. Sustain. Energ. Rev., 5(1): 97-112 (16 Pages).
Attri, R.D.N.; Sharma, V., (2013). Interpretive structural modeling approach: An overview. Res. J. Manage. Sci., 2(2): 3-8 (6 pages).
Alter, H. ; Dunn, J. J., (1980). Solid waste conversion to energy: Current European US Practice.
Bag, S.; Anand, N., (2014). Modelling GSCM framework using ISM and MICMAC analysis. African J. Bus. Manage., 8(22): 1053-1065 (13 pages).
Bag, S.; Anand, N.; Pandey, K.K., (2014). A framework for the analysis of Sustainable Supply Chain Management: an insight from Indian rubber industry. J. Supply Chain Manage. Sys., 3(1): 68-83 (16 pages).
Bag, S., Dubey, R., Mondal, N., (2015). Solid Waste to Energy Status in India: A short review. Discovery, 39(177): 75-81 (7 pages).
Bag, S.; Anand, N., (2015). Modeling barriers of sustainable supply chain network design using interpretive structural modeling: An insight from food processing sector in India, Int. J. Autom. Logist., 3(1): 234-255 (22 pages).
Census, (2011). Provisional population totals, (2011). Available at
Census, (2011). Provisional population totals, (2011). Available at
Cheng, H.; Hu, Y., (2010). Municipal solid waste as a renewable source of energy: Current and future practices in China. Bioresource Tech., 101(11): 3816-3824 (9 pages).
Cheng, H.; Zhang, Y.; Meng, A.; Li, Q., (2007). Municipal solid waste fueled power generation in China: a case study of waste to energy in Changchun city. Environ. Sci. Tech., 41(21): 7509-7515 (7 pages).
Chung, S.S.; Poon, C. S., (1996). Evaluating waste management alternatives by the multiple criteria approach. Resour., Conserv. Recy.,17(3): 189-210 (22 pages).
Eriksson, O.; Reich, M. C.; Frostell, B.; Björklund, A.; Assefa, G.; Sundqvist, J. O.; Thyselius, L., (2005). Municipal solid waste management from a systems perspective. J. Cleaner Product., 13(3): 241-252 (12 pages).
Esakku, S.; Selvam, A.; Palanivelu, K.; Nagendran, R.; Joseph, K., (2006). Leachate quality of municipal solid waste dumpsites at Chennai, India. Asian J. Water, Environ. Poll., 3(1): 69-76 (8 pages).
Finnveden, G.; Johansson, J.; Lind, P.; Moberg, Å., (2005). Life cycle assessment of energy from solid waste—part 1: general methodology and results. J. Cleaner Product., 13(3): 213-229 (17 pages).
Forsyth, T., (2006), Cooperative environmental governance and waste-to-energy technologies in Asia. Int. J. Tech. Manage. Sustain. Dev., 5(3): 209-220 (12 pages).
Girija, D.G.; Kurian, J., (2004). Solid phase anaerobic digestion of municipal solid waste. J. IAEM, 31: 147-152 (6 pages).
Huang, G.; Baetz, B. W.; Patry, G. G., (1992). A grey linear programming approach for municipal solid waste management planning under uncertainty. Civil Eng. Sys., 9(4): 319-335 (17 pages).
Islam, M. R.;    Beg, M. R. A., (2008). Renewable energy resources and technologies practice in Bangladesh. Renew. Sustain. Energ. Rev., 12(2): 299-343 (45 pages).
Jin, J.; Wang, Z.; Ran, S., (2006). Solid waste management in Macao: Practices and challenges. J. Waste Manage., 26: 1045-1051 (7 pages).
Joseph, K., (2006). Stakeholder participation for sustainable waste management. Habitat Int., 30(4): 863-871 (9 pages).
Joseph, K., (2007). Electronic waste management in India–issues and strategies. In Eleventh International Waste Management and Landfill Symposium, Sardinia. In October.
Kalyani, K.A. ; Pandey, K.K., (2014). Waste to energy status in India: A short review. Renew. Sustain. Energ. Rev., 31: 113-120 (8 pages).
Kathirvale,  S.; Yunus, M.N.M.; Sopian, K.; Samsuddin, A. H., (2004). Energy potential from municipal solid waste in Malaysia. Renew. Energ.,29(4): 559-567 (9 pages).
Kathiravale, S.; Yunus, M.N.M.; Sopian, K.; Samsuddin, A.H.; Rahman, R.A., (2003). Modeling the heating value of municipal solid waste. Fuel, 82(9): 1119-1125 (10 pages).
Kofoworola, O.F., (2007). Recovery and recycling practices in municipal solid waste management in Lagos, Nigeria. Waste Manage., 27(9): 1139-1143 (5 pages).
Kothari, R. ; Tyagi, V. V. ; Pathak, A., (2010). Waste-to-energy: A way from renewable energy sources to sustainable development. Renew. Sustain. Energ. Rev., 14(9): 3164-3170 (7 pages).
Kumar, S., (2000). Technology options for municipal solid waste-to-energy project. TIMES Teri Info. Monit. Environ. Sci., 5(1): 1-11 (11 pages).
Lorber, M.; Pinsky, P.; Gehring, P.; Braverman, C.; Winters, D.; Sovocool, W., (1998). Relationships between dioxins in soil, air, ash, and emissions from a municipal solid waste incinerator emitting large amounts of dioxins. Chemosphere, 37(9): 2173-2197 (25 pages).
Magrinho, A.; Didelet, F.; Semiao, V., (2006). Municipal solid waste disposal in Portugal. Waste Manage., 26(12): 1477-1489 (12pages).
Mbuligwe, S.E.; Kassenga, G. R., (2004). Feasibility and strategies for anaerobic digestion of solid waste for energy production in Dar es Salaam city, Tanzania. Resources, Conserv. Recy., 42(2): 183-203 (21 pages).
Metin, E.; Eröztürk, A.; Neyim, C., (2003). Solid waste management practices and review of recovery and recycling operations in Turkey. Waste Manage., 23(5): 425-432 (8 pages).
Miranda, M. L.; Hale, B., (1997). Waste not, want not: the private and social costs of waste-to-energy production. Energ. Pol., 25(6): 587-600 (14 pages).
Murphy, J. D.;  McKeogh, E., (2004). Technical, economic and environmental analysis of energy production from municipal solid waste. Renew. Energ., 29(7): 1043-1057 (14 pages).
Nagendran, R.; Selvam, A.; Joseph, K.; Chiemchaisri, C., (2006). Phytoremediation rehabilitation of municipal solid waste landfills and dumpsites: A brief review. Waste Manage., 26(12): 1357-1369 (13 pages).
Narayana, T., (2009). Municipal solid waste management in India: From waste disposal to recovery of resources? Waste Manage., 29(3): 1163-1166 (4 pages).
Ojha, K., (2011). Status of MSW management system in northern India-an overview, Environ Dev Sustain, 13: 203-215 (13 pages).
Parvathamma, G.,(2014). An analytical study on problems and policies of solid waste management in India: Special reference to Bangalore City, 8(10): 6-15 (10 pages).
Planning commission report of India for the task force on waste to energy, (2014). Volume 1. Available at
Psomopoulos, C.S. ; Bourka, A. ; Themelis, N.J., (2009). Waste-to-energy: A review of the status and benefits in USA. Waste Manage., 29(5): 1718-1724 (7 pages).
Ravindranath, N.H. ; Somashekar, H.I. ; Nagaraja, M.S. ; Sudha, P. ; Sangeetha, G. ; Bhattacharya, S.C.; Salam, P. A., (2005). Assess. Sustain. non-plantation biomass Res. Potential Energ. in India. Biomass Bioenerg., 29(3): 178-190 (13 pages).
Ruth, L.A., (1998). Energy from municipal solid waste: A comparison with coal combustion technology. Prog. Energ. Combust. Sci., 24(6): 545-564 (20 pages).
Sharholy, M.; Ahmad, K.; Mahmood, G.; Trivedi, R. C., (2008). Municipal solid waste management in Indian cities: A review. Waste Manage., 28(2): 459-467 (9 pages).
Sushil, (2005a). Interpretive matrix: A tool to aid interpretation of management and social research. Global J. Flex. Sys. Manage., 6(2): 27-30 (4 pages).
Sushil, (2005b). A flexible strategy framework for managing community and change. Int. J. Global Bus. Competitiveness, 1(1): 22-32 (11 pages).
Sushil, (2009). Interpretive ranking process. Global Journal of Global J. Flex. Sys. Manage., 10(4): 1-10 (10 pages).
Sushil, (2012). Interpreting the Interpretive Structural Model. Global J. Flex. Sys. Manage., 13(2): 87-106 (20 pages).
Swati, M.; Rema, T.; Joseph, K., (2008). Hazardous organic compounds in urban municipal solid waste from a developing country. J. hazard. Mater., 160(1): 213-219 (7 pages).
Talyan, V.; Dahiya, R. P.; Anand, S.; Sreekrishnan, T.R., (2007). Quantification of methane emission from municipal solid waste disposal in Delhi. Resour., Conserv. Recy., 50(3): 240-259 (20 pages).
Tsai, W. T.; Chou, Y. H., (2006). An overview of renewable energy utilization from municipal solid waste (MSW) incineration in Taiwan. Renewable and Sustainable Energ. Rev., 10(5): 491-502 (12 pages).
Unnikrishnan, S.; Singh, A., (2010). Energy recovery in solid waste management through CDM in India and other countries. Res., Conserv. Recy., 54(10): 630-640 (10 pages).
Warfield, J.N., (1974). Structuring complex systems. Battele monograph. Columbus, O.H: Battele Memorial Ins. 4.
Warfield, J.N., (1994). A science of generic design: Managing complexity through systems design, Iowa: Iowa State University Press.
Warfield, J.N., (1999). Twenty laws of complexity: Science applicability in organizations. Syst. Res. Behav. Sci., 16(1): 3-40 (38 pages).
Watson, R.H., (1978). Interpretive structural modeling—A useful tool for technology assessment? Tech. Forecasting Soc. Change, 11(2): 165-185 (21 pages).

Letters to Editor

GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.