Document Type : REVIEW PAPER


College of Sustainability and Human Sciences, Zayed University, Abu Dhabi, United Arab Emirates


Geothermal investors need to be confident with the methods and results of exploration programs. Also cutting the upfront cost of geothermal exploration will further encourage investors to consider investment in this emerging clean energy field. Hence, it is of paramount importance to improve prospecting techniques in order to explore where economic concentrations of geothermal energy are to be expected.  The current study evaluates different approaches for downscaling thermal data from remote sensing images together with factors in surface and subsurface environment. The paper discusses case studies, the challenge and the way forward for geothermal prospecting as well as practical solutions to discrepancy that faces the mapping and documentation of spatial geothermal anomalies.  It also discusses main criteria that should be considered while prospecting for geothermal energy.


Baldridge, A.M.; Hook, S.J.; Grove, C.I.; Rivera, G., (2009). The ASTER spectral library version 2.0. Remote Sens. Environ. 113: 711–715 (5 pages).
Bertani, R., (2012). Geothermal power generation in the world 2005-2010 update report. Geothermics, 41: 1-29 (29 pages).
Blackwell, D.; Negraru., P.; Richards, M., (2006). Assessment of the enhance geothermal system resource base of the United States, Nat. Res. Res., 15(4): 283-308 (6 pages).
Bromley, C.; van Manen, S.; Mannington, W., (2011). Heat flux from steaming ground: Reducing uncertainties. In Thirty-Sixth Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California.
Calvin, W.M., Coolbaugh, M., Kratt, C., and Vaughan, R. (2005) Application of remote sensing technology to geothermal exploration, in Rhoden, H.N., Steininger, R.C., and Vikre, P.G., eds., Geological Society of Nevada Symposium: Window to the World, Reno, Nevada, May 2005, 1083–1089.
Carr, B.; Heasler, H.; Jaworowski, C., (2009). Airborne reconnaissance of hydrothermal areas using daytime thermal infrared imagery. Portland GSA Annual Meeting.
Clark, R. N., (1999). Spectroscopy of rocks and minerals and principles of spectroscopy. Remote Sensing for the Earth Sciences: Manual Remote Sens., 3 ed., 3: 3-58 (55 pages).
Clauser, C.; Huenges, E., (1995). Thermal conductivity of rocks and minerals: Rock physics and phase relations, A handbook of physical constants, American Geophysical Union, 105-126 (22 pages).
Coolbaugh, M.F.; Kratt, C.; Fallacaro, A.; Calvin, W.M.; Taranik, J.V., (2007). Detection of geothermal anomalies using advanced spaceborne thermal emission and reflection radiometer (ASTER) thermal infrared images at Bradys Hot Springs, Nevada, USA. Remote Sens. Environ. 106(3): 350-359 (10 pages).
Dean, K.G.; Dehn, J.; Papp, K.R.; Smith, S.; Izbekov, P.; Peterson, R.; Steffke, A., (2004). Integrated satellite observations of the 2001 eruption of Mt. Cleveland, Alaska. J Volcanol. Geotherm. Res. 135 (1): 51–73 (23 pages).
Dehn, J.; Prakash, A.; Dean, K., (2006). Unpublished final FLIR report for chena hot springs resort. Technical report, in Haselwimmer, C.; Prakash, A.; Holdmann, G., (2013): Quantifying the heat flux and outflow rate of hot springs using airborne thermal imagery Case study from Pilgrim Hot Springs, Alaska. Remote Sen. Environ. 136: 37-46 (10  pages).
DiPippio, R., (2005). Geothermal power plants: Principles, applications and case studies. Butterworth-Heinemann: Elsevier, Oxford, England, (600 pages).
Eneva, M.; Coolbaugh, M., (2009). Importance of elevation and temperature inversions for the interpretation of thermal infrared satellite images used in geothermal exploration. GRC Transactions, 33.
Eneva, M.; Coolbaugh, M.; Combs, J. (2006). Application of satellite thermal infrared imagery to geothermal exploration in east central California. GRC Transactions 30.
Goetz, A.F.H.; Rock, B.N.; Rowan, L.C., (1983). Remote sensing for exploration: An overview, Econom. Geol., 78: 573–590 (18 pages).
Green, R. O.; Eastwood, M. L.; Sarture, C. M.; Chrien, T. G.; Aronsson, M.; Chippendale; B. J., Faust, J. A.; Pavri, B. E.; Chovit, C. J.;Solis, M.; Olah, M. R.; and Williams, O., (1998). Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS). Remote Sens. Environ. 64: 227-248 (12 pages).
Gupta, H.; Roy S., (2007). Geothermal energy: An alternative resources for the 21st Century. 1st. ed., Elsiver Publisher, UK, pp 297.
Gutierrez, F.J.; Lemus, M.; Parada, M.A.; Benavente, O.M.; Aguilera, F.A., (2012). Contribution of ground surface altitude difference to thermal anomaly detection using satellite images: Application to volcanic/geothermal complexes in the Andes of Central Chile. J. Volcanol. Geotherm. Res. 237: 69–80 (12 pages).
Hackwell, J. A.; Warren, D.W.; Bongiovi, R.P.; Hansel, S.J.; Hayhurst, T.L.; Mabry, D.J.; Sivjee, M.J.; Skinner, J.W., (1996). LWIR/MWIR imaging hyperspectral sensor for airborne and ground-based remote sensing, SPIE.
Haselwimmer, C. E.; Prakash, A.; Holdmann, G., (2011). Geothermal exploration at pilgrim hot springs. Alaska using airborne thermal infrared remote sensing. Geothermal Resource Council Annual Meeting 2011, San Diego, USA.
Haselwimmer, C.; Prakash, A., (2012). Chapter 17 - Thermal infrared remote sensing of geothermal systems. in thermal remote sensing, edited by Kuenzer, C., Springer and Praxis, ~500 p.
Haselwimmer, C.; Prakash, A.; Holdmann, G., (2013): Quantifying the heat flux and outflow rate of hot springs using airborne thermal imagery Case study from Pilgrim Hot Springs, Alaska. Remote Sens. Environ. 136: 37-46 (10 pages).
Henry, C. D., (1979). Geologic setting and geochemistry of thermal water and geothermal assessment, Trans-Pecos Texas: The University of Texas Bureau of Economic Geology, Report of Investigation  96, 48 p.
Hook, S.J.; Myers, J.; Thome, K.J.; Fitzgerald, M.; Kahle, A.B., (2001). The MODIS/ASTER airborne simulator (MASTER). A new instrument for earth science studies. Remote Sens. Environ. 76: 93–102 (10 pages).
Huntington, J.F., (1996). The role of remote sensing in finding hydrothermal mineral deposits on earth. Ciba Foundation Symposium 202 – Evolution of hydrothermal ecosystems on earth. John Wiley & Sons, Ltd.: 214-235 (22 pages).
Jaworowski, C.; Heasler, H.; Neale, C.; Cardenas, B.; Sivarajan, S., (2009). Using night-time, thermal infrared, imagery to remotely monitor the hydrothermal system at hot spring basin, Yellowstone National Park. Rocky Mountain Section - 61st. Annual Meeting, 11-13 May.
Kratt, C. B., (2005). Geothermal exploration with remote sensing from 0.45 – 2.5 μm over Brady-Desert Peak, Churchill County, Nevada. M.Sc. Thesis, University of Nevada, Reno.
Kratt, C.; Coolbaugh, M.F.; Calvin, W.M., (2006). Remote detection of quaternary borate deposits with ASTER satellite imagery as a geothermal exploration tool, Geotherm. Res. Council Trans., 30: 435-439 (5 pages).
Martini, B. A.; Hausknecht, P.; Pickles, W. L.; Cocks, P.A., (2004). The northern fish lake valley pull-apart basin: Geothermal prospecting with hyperspectral imaging. Geotherm. Res. Council Trans., 28: 663-667 (5 pages).
MODIS Thermal Infrared Data. AGU Fall Meeting  (2011). San Francisco, USA.
Mongillo, M., (1994). Aerial thermal infrared mapping of the Waimangu- Waiotapu Geothermal Region, New Zealand." Geothermics 23(5/6): 511- 526 (16 pages).
Mongillo, M.A.; Graham, D.J., (1999). Quantitative evaluation of airborne video TIR survey
Oppenheimer, C. (1997a). Remote sensing of the color and temperature of volcanic lakes. Int. J. Remote Sens. 18 (1): 5–37 (29 pages).
Oppenheimer, C., (1997b). Ramifications of the skin effect for Crater Lake heat budget analysis. J. Volcan. Geotherm. Res., 75 (1–2): 159–165 (6 pages).
Patrick, M.; Dean, K.; Dehn, J., (2004). Active mud volcanism observed with Landsat 7 ETM+ J.f Volcan. Geotherm.Res.,131 (3–4): 307 320 (5  pages).
Prata, A.J.; Grant, I.F., (2001). Determination of mass loadings and plume heights of volcanic ash clouds from satellite data. CSIRO Atmospheric research technical paper, 48: 41 pp.
Wright, R., Flynn, L., Garbeil, H., Harris, A., Pilger, E., (2002). Automated volcanic eruption detection using MODIS. Remote Sens. Environ. 82 (1): 135–155 (11 pages).
Rowan, L.C.; Mars, J.C.; Simpson, C.J., (2005). Lithologicmapping of the Mordor, NT, Australia ultramafic complex by using the advanced spaceborne thermal emission and reflection radiometer (ASTER). Remote Sens. Environ. 99 (1): 105–126 (12 pages).
Rybach, L., (1981). Geothermal systems, conductive heat flow, geothermal anomalies; in Geothermal systems: principles and case histories. Rybach, L.; Muffler,j.P., John Wiley & Sons.
Sabine, C.; Realmuto, V.J.; Taranik, J.V., (1994). Quantitative estimation of granitoid composition from thermal infrared multispectral scanner (TIMS) data, desolation wilderness, Northern Sierra Nevada, California. J. Geophys. Res. 99 (B3): 4261–4271 (11 pages).
Taranik, J.V., (1988). Application of aerospace remote sensing technology to exploration for precious metal deposits in the western United States. In: Schafer, R.W. (Ed.), Bulk Mineable Precious Metal Deposits of the Western United States, GSN Symposium Proceedings. Geological Society of Nevada, Reno, NV, 551–575 (25 pages).
van der Meer, F.; Hecker, C.; Ruitenbeek, F.V.; Werff, H.V.D.; Wijkerslooth, C.D.; Wechsler, C., (2014 ). Geologic remote sensing for geothermal exploration: A review. Int. J. Appl. Earth Observ. Geoinf., 33: 255–269 (15 pages).
Vaughan, R. G.; Hook, S.J.; Calvin, W.M.; Taranik, J.V., (2005). Surface mineral mapping at Steamboat Springs, Nevada, USA, with multiwavelength thermal infrared images. Remote Sens. Environ. 99(1–2): 140-158 (19 pages).
Vaughan, R. G.; Calvin, W.M.; Taranik, J.V., (2003). SEBASS hyperspectral thermal infrared data: surface emissivity measurement and mineral mapping. Remote Sens. Environ. 85(1): 48-63 (16 pages).
Zhang, X.; Pazner, M.; Duke, N., (2007). Lithologic and mineral information extraction for gold exploration using ASTER data in the South Chocolate Mountains, California. ISPRS J. Photogramm. Remote Sens. 62 (4): 271–282 (12 pages).
Hodder, D. T., (1970). Application of remote sensing to geothermal prospecting. Geothermics, 2 (1): 368–380 (13 pages).

Letters to Editor

GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.