Document Type : REVIEW PAPER


1 Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia

2 Department of Chemistry, Faculty of Science, Federal University Dutse, Jigawa State, Nigeria


Agricultural waste biomass generated from agricultural production and food processing industry are abundant, such as durian  peel, mango peel, corn straw, rice bran, corn shell, potato peel and many more. Due to low commercial value, these wastes are disposed in landfill, which if not managed properly may cause environmental problems. Currently, environmental laws and regulations pertaining to the pollution from agricultural waste streams by regulatory agencies are stringent and hence the application of toxic solvents during processing has become public concern. Recent development in valuable materials extraction from the decomposition of agricultural waste by sub-critical water treatment from the published literature was review. Physico-chemical characteristic (reaction temperature, reaction time and solid to liquid ratio) of the sub-critical water affecting its yield were also reviewed. The utilization of biomass residue from agriculture, forest wood production and from food and feed processing industry may be an important alternative renewable energy supply. The paper also presents future research on sub-critical water.


Abdelmoez, W.; Abdelfatah, R.; Tayeb, A., (2011). Extraction of cottonseed oil using subcritical water technology. AIChE Journal, 57(9): 2353–2359 (7 pages).
Abdelmoez, W.; Abdelhamid, M.; Yoshida, H., (2012). Extraction of Jojoba Oil using subcritical water technology. Recent Patents Chem. Eng., 5: 63–70 (8 pages).
Abdelmoez, W.; Nage, S. M.; Bastawess, A.; Ihab, A.; Yoshida, H., (2014). Subcritical water technology for wheat straw hydrolysis to produce value added products. J. Cleaner Prod., 70: 68–77 (10 pages).
Abdelmoez, W.; Nakahasi, T.; Yoshida, H., (2007). Amino acid transformation and decomposition in saturated subcritical water conditions. Ind. Eng. Chem. Res., 46(16): 5286–5294 (9 pages).
Adachi, S., (2009). Properties of Subcritical Water and Its Utilization. Foods Food Ingredients J. Jpn, 214(2): 8502.
Alvarez, V. H.; Saldaña, M. D. A., (2013). Hot pressurized fluid extraction optimization of potato peel using response surface and the taguchi method. In III Iberoamerican Conference on Supercritical Fluids Cartagena de Indias (Colombia) (pp. 1–8), (8 pages).
Amashukeli, X.; Pelletier, C. C.; Kirby, J. P.; Grunthaner, F. J., (2007). Subcritical water extraction of amino acids from Atacama Desert soils. J. Geophysical Res., 112: 1–10 (10 pages).
Asl, A. H.; Khajenoori, M., (2013). Subcritical water extraction. In Mass Transfer - Advances in Sustainable Energy and Environment Oriented Numerical Modeling (pp. 459–487), (9 pages).
Azmir, J.; Zaidul, I. S. M.; Rahman, M. M.; Sharif, K. M.; Mohamed, A.; Sahena, F.; Omar, A. K. M., (2013). Techniques for extraction of bioactive compounds from plant materials : A review. J. Food Eng., 117(4): 426–436 (11 pages).
Budrat, P.; Shotipruk, A., (2009). Enhanced recovery of phenolic compounds from bitter melon (Momordica charantia) by subcritical water extraction. Separation Purification Tech., 66: 125–129 (5 pages).
Cardenas-toro, F. P.; Alcazar-alay, S. C.; Forster-carneiro, T.; Meireles, M. A. A., (2014). Obtaining oligo- and monosaccharides from agroindustrial and agricultural residues using hydrothermal treatments. Food Public Health, 4(3): 123–139 (17 pages).
Carr, A. G.; Mammucari, R.; Foster, N. R., (2011). A review of subcritical water as a solvent and its utilisation for the processing of hydrophobic organic compounds. Chem. Eng. J., 172(1): 1–17 (17 pages).
Cheigh, C.-I.; Yoo, S.-Y.; Ko, M.-J.; Chang, P.-S.; Chung, M.-S., (2015). Extraction characteristics of subcritical water depending on the number of hydroxyl group in flavonols. Food Chem., 168: 21–26 (6 pages).
Demirbas, A., (2009). Biorenewable liquid fuels. In Biofuels (pp. 103–230). Springer Publisher.
Deng, G.-F.; Shen, C.; Xu, X.-R.; Kuang, R.-D.; Guo, Y.-J.; Zeng, L.-S.; Li, H.-B., (2012). Potential of fruit wastes as natural resources of bioactive compounds. Int. J. Molecular Sci., 13(7): 8308–23 (16 pages).
Fornari, T.; Vicente, G.; Vázquez, E.; García-Risco, M. R.; Reglero, G., (2012). Isolation of essential oil from different plants and herbs by supercritical fluid extraction. J. Chromatography. A, 1250: 34–48 (5 pages).
Garcia-salas, P.; Morales-soto, A.; Segura-carretero, A.; Fernández-gutiérrez, A., (2010). Phenolic-compound-extraction systems for fruit and vegetable samples. Molecules, 15: 8813–8826 (14 pages).
Gong, Y.; Zhang, X.; He, L.; Yan, Q.; Yuan, F.; Gao, Y., (2013). Optimization of subcritical water extraction parameters of antioxidant polyphenols from sea buckthorn (Hippophaë rhamnoides L.) seed residue. J. Food Sci. Tech., 2 (1): 1–9 (9 pages).
Hata, S.; Wiboonsirikul, J.; Maeda, A., (2008). Extraction of defatted rice bran by subcritical water treatment, 40, 44–53 (10 pages).  
He, L.; Zhang, X.; Xu, H.; Xu, C.; Yuan, F.; Knez, Ž.; Gao, Y., (2012). Subcritical water extraction of phenolic compounds from pomegranate (Punica granatum L.) seed residues and investigation into their antioxidant activities with HPLC–ABTS+ assay. Food Bioproducts Process., 90(2): 215–223 (9 pages).
Jintana, W.; Shuji, A., (2008). Extraction of functional substances from agricultural products or by-products by subcritical water treatment. Food Sci. Tech. Res., 14(4): 319–328 (10 pages).
Khajenoori, M., (2013). Subcritical Water Extraction of Essential Oils from Matricaria Chamomilla L. Int. J. Eng., 26(5) B: 489–494 (6 pages).
Khajenoori, M.; Asl, a. H.; Hormozi, F., (2009). Proposed models for subcritical water extraction of essential oils. Chinese J. Chem. Eng., 17(3): 359–365 (7 pages).
Kruse, A.; Dahmen, N., (2014). Water – A magic solvent for biomass conversion. J. Supercritical Fluids, 96, 36–45 (10 pages).
Lu, J.; Feng, X.; Han, Y.; Xue, C., (2014). Optimization of subcritical fluid extraction of carotenoids and chlorophyll a from (laminaria japonica aresch) by response surface methodology. J. Sci. Food  Agric., 94(1): 139–45 (7 pages).
Mohammad H. E.; Fereshteh , S. R., (2007). Subcritical water extraction of essential oils from coriander seeds (Coriandrum sativum L). J. Food Eng., 80: 735–740 (6 pages).
Nazir, N.; Mangunwidjaja, D.; Yarmo, M. A., (2013). Production of biodiesel and nontoxic jatropha seedcakes from jatropha curcas. In J. W. Lee (Ed.), Advanced Biofuels and Bioproducts, pp. 525–551 (27 pages).
Ndlela, S. C.; Moura, J. M. L. N. De; Olson, N. K.; Johnson, L. A., (2012). Aqueous extraction of oil and protein from soybeans with subcritical water. J. Am. Oil Chem. Soc., 89: 1145–1153 (9 pages).
Ponnusamy, S.; Reddy, H. K.; Muppaneni, T.; Downes, C. M.; Deng, S., (2014). Life cycle assessment of biodiesel production from algal bio-crude oils extracted under subcritical water conditions. Bioresource Tech., 170: 454–61 (8 pages).
Pourali, O.; Asghari, F. S.; Yoshida, H., (2010). Production of phenolic compounds from rice bran biomass under subcritical water conditions. Chem. Eng. J., 160(1): 259–266 (8 pages).
Pourali, O.; Salak, F.; Yoshida, H., (2009a). Simultaneous rice bran oil stabilization and extraction using sub-critical water medium. J. Food Eng., 95(3): 510–516 (7 pages).
Pourali, O.; Salak, F.; Yoshida, H., (2009b). Sub-critical water treatment of rice bran to produce valuable materials. Food Chem., 115(1): 1–7 (7 pages).
Prado, J. M.; Forster-carneiro, T.; Rostagno, M. A.; Follegatti-romero, L. A.; Filho, F. M.; Meireles, M. A. A., (2014). Obtaining sugars from coconut husk, defatted grape seed, and pressed palm fiber by hydrolysis with subcritical water. The Journal of Supercritical Fluids, 89: 89–98 (10 pages).
Rangsriwong, P.; Rangkadilok, N.; Satayavivad, J., (2009). Subcritical water extraction of polyphenolic compounds from Terminalia chebula Retz . Fruits, 66: 51–56 (6 pages).
Ravber, M.; Knez, Ž.; Škerget, M., (2015). Simultaneous extraction of oil- and water-soluble phase from sunflower seeds with subcritical water. Food Chem., 166: 316–23 (8 pages).
Reddy, H. K.; Muppaneni, T.; Sun, Y.; Li, Y.; Ponnusamy, S.; Patil, P. D.; Deng, S., (2014). Subcritical water extraction of lipids from wet algae for biodiesel production. Fuel, 133: 73–81 (9 pages).
Ruiz-montañez, G.; Ragazzo-sánchez, J. A.; Calderón-santoyo, M.; Cruz, G. V., (2014). Evaluation of extraction methods for preparative scale obtention of mangiferin and lupeol from mango peels; mangifera indica L., Food Chem., 159: 267–272 (6 pages).
Sasaki, M.; Goto, M., (2008). Recovery of phenolic compounds through the decomposition of lignin in near and supercritical water. Chem. Eng. Process.: Process Intensification, 47(9-10): 1609–1619 (11 pages).
Shimanouchi, T.; Ueno, S.; Yang, W.; Kimura, Y., (2014). Extraction of reducing sugar with anti-oxidative scavengers from peels of carya cathayensis Sarg. Use of Subcritical Water. Environ. Eng. Res., 19(1): 41–45 (5 pages).
Singh, P. P., (2011). Subcritical Water Extraction of Functional Ingredients and Glycoalkaloids from Potato Peel. MSc. thesis, University of Alberta.
Singh, P. P.; Saldaña, M. D. A., (2011). Subcritical water extraction of phenolic compounds from potato peel. Food Res. Int., 44(8): 2452–2458 (7 pages).
Suan, L., (2013). A review on plant-based rutin extraction methods and its pharmacological activities. J. Ethnopharmacology, 150(3): 805–817 (13 pages).
Teo, C. C.; Tan, S. N.; Yong, J. W. H.; Hew, C. S.; Ong, E. S., (2010). Pressurized hot water extraction. J. Chromatography. A, 1217(16): 2484–94 (11 pages).
Tunchaiyaphum, S.; Eshtiaghi, M. N.; Yoswathana, N., (2013). Extraction of bioactive compounds from mango peels using green technology. Int. J. Chem. Eng. Applications, 4(4): 194–198 (5 pages).
Uddin, M. S.; Ahn, H.-M.; Kishimura, H.; Chun, B.-S., (2010). Production of valued materials from squid viscera by subcritical water hydrolysis. J. Environ. Biol. Academy of Environmental Biology, India, 31(5): 675–9 (5 pages).
Unhasirikul, M.; Narkrugsa, W.; Naranong, N., (2013). Sugar production from durian ( Durio zibethinus Murray ) peel by acid hydrolysis. African J. Biotechnol., 12(33): 5244–5251 (11 pages).
Viganó, J.; Machado, A. P. D. F.; Martínez, J., (2014). Sub- and supercritical fluid technology applied to food waste processing. J. Supercritical Fluids, 96: 272–286 (15 pages).
Vongsak, B.; Sithisarn, P.; Mangmool, S., (2013). Maximizing total phenolics , total flavonoids contents and antioxidant activity of Moringa oleifera leaf extract by the appropriate extraction method. Industrial Crops & Products, 44: 566–571 (6 pages).
Wang, Z.; Deng, S.; Gu, Q.; Cui, X.; Zhang, Y.; Wang, H., (2014). Subcritical water extraction of Huadian oil shale under isothermal condition and pyrolysate analysis. Energy Fuel Fuels, 28: 2305–2313 (9 pages).
Wiboonsirikul, J.; Hata, S.; Tsuno, T.; Kimura, Y.; Adachi, S., (2007). Production of functional substances from black rice bran by its treatment in subcritical water. LWT - Food Sci. Tech., 40: 1732–1740 (9 pages).
Woo, A.; Sutanto, S.; Tran-nguyen, P. L.; Ismadji, S.; Gunawan, S., (2014). Biodiesel production under subcritical solvent condition using subcritical water treated whole Jatropha curcas seed kernels and possible use of hydrolysates to grow Yarrowia lipolytica. Fuel, 120: 46–52 (7 pages).
Yang, L.; Wang, H.; Zu, Y.; Zhao, C.; Zhang, L.; Chen, X.; Zhang, Z., (2011). Ultrasound-assisted extraction of the three terpenoid indole alkaloids vindoline, catharanthine and vinblastine from Catharanthus roseus using ionic liquid aqueous solutions. Chem. Eng. J., 172(2-3): 705–712 (8 pages).
Yoshida, H.; Izhar, S.; Nishio, E.; Utsumi, Y.; Kakimori, N.; Asghari Feridoun, S., (2014). Recovery of indium from TFT and CF glasses in LCD panel wastes using sub-critical water. Solar Energy Mater. Solar Cells, 125: 14–19 (6 pages).
Yoswathana, N.; Eshtiaghi, M. N., (2013). Optimization for Subcritical Water Extraction of Phenolic Compounds from Rambutan Peels. World Academy Sci. Eng. Tech., 7: 122–126 (6 pages).
Zeng, H.; Wang, Y.; Kong, J.; Nie, C.; Yuan, Y., (2010). Ionic liquid-based microwave-assisted extraction of rutin from Chinese medicinal plants. Talanta, 83(2): 582–90 (9 pages).
Zhang, P., (2014). Characterization of biofuel from diatoms via hydrothermal liquefaction. University of Illinois at Urbana-Champaign,.
Zhu, G.; Xiao, Z.; Zhu, X.; Yi, F.; Wan, X., (2013a). Reducing sugars production from sugarcane bagasse wastes by hydrolysis in sub-critical water. Clean Tech. Environ. Policy, 15(1): 55–61 (7 pages).
Zhu, G.; Zhu, X.; Xiao, Z.; Zhou, R.; Zhu, Y.; Wan, X., (2013b). Kinetics of peanut shell pyrolysis and hydrolysis in subcritical water. J. Mater. Cycles Waste Manage., 10(1): 1–11 (11 pages).

Letters to Editor

GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.