Document Type: REVIEW PAPER


1 Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India

2 Department of Chemistry, King Fahd University of Petroleum and Minerals Dhahran, Saudi Arabia

3 Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran

4 4Department of Chemistry, Safadasht Branch, Islamic Azad University, Safadasht, Iran

5 Faculty of Chemistry, Department of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran

6 Department of Toxicology, Ahar Branch, Islamic Azad University, Ahar, Iran


Ammonium ions wastewater pollution has become one of the most serious environmental problems today. The treatment of ammonium ions is a special concern due to their recalcitrance and persistence in the environment. In recent years, various methods for ammonium ion removal from wastewater have been extensively studied. This paper reviews the current methods that have been used to treat ammonium ion wastewater and evaluates these techniques. These technologies include ion exchange, adsorption, biosorption, wet air oxidation, biofiltration, diffused aeration, nitrification and denitrification methods. About 75 published studies (1979-2015) are reviewed in this paper. It is evident from the literature survey articles that ion exchange, adsorption and biological technology are the most frequently studied for the treatment of ammonium ion wastewater.


Adeva, M.M.; Souto, G.; Blanco, N.; Donapetry, C., (2012). Ammonium metabolism in humans, Metabolism, 61(11):1495-1511 (17 pages).

Alshameri, A.; Ibrahim, A.; Assabri, A.M.; Lei, X.; Wang, H.; Yan, C., (2014). The investigation into the ammonium removal performance of Yemeni natural zeolite: Modification, ion exchange mechanism, and thermodynamics, Powder Tech., (258): 20-31 (12 pages).

Alshameri, A.; Yan, C.; Al-Ani, Y.; Dawood, A.S.; Ibrahim, A.; Zhou, C.; Wang, H., (2014). An investigation into the adsorption removal of ammonium by salt activated Chinese (Hulaodu) natural zeolite: Kinetics, isotherms, and thermodynamics, J. Taiwan Inst. Chem. Eng., 45(2): 554-564 (11 pages).

Apiratikul, R.; Pavasant, P., (2008).Batch and column studies of biosorption of heavy metals by Caulerpalentillifera, Bioresour. Technol., 99(8): 2766-2777 (12 pages).

Arslan, A.; Veli, S., (2012). Zeolite 13X for adsorption of ammonium ions from aqueous solutions and hen slaughterhouse wastewaters, J. Taiwan Inst. Chem. Eng., 43(3): 393-398 (6 pages).

Azman, S.; Mohd Said, M.I.; Ahmad, F.; Mohamad, M., (2014). Biofiltration potential of macroalgae for ammonium removal in outdoor tank shrimp wastewater recirculation system, Biomass Bioenerg., (66): 103-109 (7 pages).

Balci, S.; Dinçel, Y., (2002). Ammonium ion adsorption with sepiolite: use of transient uptake method, Chem. Eng. Process., 41(1): 79-85 (7 pages).

Bassin, J.P.; Pronk, M.; Kraan, R.; Kleerebezem, R.; Van Loosdrecht, M.C.M., (2011). Ammonium adsorption in aerobic granular sludge, activated sludge and anammox granules, Water Res., 45(16): 5257-5265 (9 pages).

Bekkum, H.V.; Jansen, J.C.; Flanigen, E.M., (1991). Introduction to zeolite science and practice. Studies in surface catalysis, Elsevier, Amsterdam, Vol. 58.

Bernardi, M.; Le Du, M.; Dodouche, I.; Descorme, C.; Deleris, S.; Blanchet, E.; Besson, M., (2012). Selective removal of the ammonium-nitrogen in ammonium acetate aqueous solutions by catalytic wet air oxidation over supported Pt catalysts, Appl. Catal., B(128): 64-71 (8 pages).

Blocki, S. W., (1993). Hydrophobic zeolite adsorbent: a proven advancement in solvent separation technology, Environ. Prog., 12(3): 226-230 (5 pages).

Bouwer, E. J.; Crowe, P. B., (1988).Biological processes in drinking water treatment, J. Am. Water Works Assn., 82-93 (12 pages).

Cincotti, A.; Lai, N.; Orrù, R.; Cao, G., (2001). Sardinian natural clinoptilolites for heavy metals and ammonium removal: experimental and modeling, Chem. Eng. J., 84(3): 275-282 (8 pages).

Cooney, E.L.; Booker, N.A.; Shallcross, D.C.; Stevens, G.W., (1999). Ammonia removal from wastewaters using natural Australian zeolite. II. Pilot-scale study using continuous packed column process, Sep. Sci. Technol., 34(14): 2741-2760 (20 pages).

Cooney, E.L.; Booker, N.A.; Shallcross, D.C.; Stevens, G.W., (1999). Ammonia removal from wastewaters using natural Australian zeolite. I. Characterization of the zeolite, Sep. Sci. Technol., 34(12): 2307-2327 (21 pages).

Ćurković , L.; Cerjan-Stefanoviæ, Š.; Filipan, T., (1997). Metal ion exchange by natural and modified zeolites, Water Res., 31(6): 1379-1382 (4 pages).

Demir, A.; Gunay, A.; Debik, E., (2002). Ammonium removal from aqueous solution by ion-exchange using packed bed natural zeolite, Water SA, 28(3): 329-336 (8 pages).

Erdem, E.; Karapinar, N.; Donat, R., (2004). The removal of heavy metal cations by natural zeolites, J. Colloid Interface Sci., 280(2): 309-314 (6 pages).

Feng, S.; Xie, S.; Zhang, X.; Yang, Z.; Ding, W.; Liao, X.; Chen, C., (2012). Ammonium removal pathways and microbial community in GAC-sand dual media filter in drinking water treatment, J. Environ. Sci., 24(9): 1587-1593 (7 pages).

González, M. R.; Pereyra, A. M.; Basaldella, E. I., (2011). Trivalent Chromium Ion Removal from Aqueous Solutions Using Lowcost

Zeolitic Materials Obtained from Exhausted FCC Catalysts, Adsorpt. Sci. Technol., 29(7): 629-636 (8 pages).

Graham, T. E.; MacLean, D. A., (1992). Ammonia and amino acid metabolism in human skeletal muscle during exercise, Can. J. Physiol. Pharmacol., 70(1): 132-141 (10 pages).

Gupta, V. K.; Khamparia, S.; Tyagi, I.; Jaspal, D.; Malviya, A., (2015). Decolorization of mixture of dyes: A critical review, Global J. Environ. Sci. Manage., 1 (1): 71-94 (24 pages).

Haralambous, A.; Maliou, E.; Malamis, M., (1992). The use of zeolite for ammonium uptake, Water Sci. Technol., 25(1): 139-145 (7 pages).

Hellinga, C.; Schellen, A.A.J.C.; Mulder, J.W.; Van Loosdrecht, M.C.M.; Heijnen, J.J., (1998). The SHARON process: an innovative method for nitrogen removal from ammoniumrich waste water, Water Sci. Technol., 37(9): 135-142 (8 pages).

Huang, H.; Xiao, X.; Yan, B.; Yang, L., (2010). Ammonium removal from aqueous solutions by using natural Chinese (Chende) zeolite as adsorbent, J. Hazard. Mater., 175(1): 247-252 (6 pages).

Huang, X.; Li, W.; Zhang, D.; Qin, W., (2013). Ammonium removal by a novel oligotrophic Acinetobacter sp. Y16 capable of heterotrophic nitrification–aerobic denitrification at low temperature, Bioresour. Technol., (146): 44-50 (7 pages).

Huo, H.; Lin, H.; Dong, Y.; Cheng, H.; Wang, H.; Cao, L., (2012). Ammonia-nitrogen and phosphates sorption from simulated reclaimed waters by modified clinoptilolite, J. Hazard. Mater., (229): 292-297 (6 pages).

Ip, Y.K.; Chew, S.F.; Randall, D.J., (2001). Ammonia toxicity, tolerance, and excretion, Fish Physiol., (20): 109-148 (40 pages).

Ismail, Z.Z.; Tezel, U.; Pavlostathis, S.G., (2010). Sorption of quaternary ammonium compounds to municipal sludge, Water Res., 44(7): 2303-2313 (11 pages).

Jellali, S.; Wahab, M.A.; Anane, M.; Riahi, K.; Jedidi, N., (2011). Biosorption characteristics of ammonium from aqueous solutions onto Posidoniaoceanica (L.) fibers, Desalination, 270(1): 40-49 (10 pages).

Kang, S.Y.; Lee, J.U.; Moon, S.H.; Kim, K.W., (2004). Competitive adsorption characteristics of Co2+, Ni2+, and Cr3+ by IRN-77 cation exchange resin in synthesized wastewater, Chemosphere, 56(2): 141-147 (7 pages).

Katz, A.; Broberg, S.; Sahlin, K.;Wahren, J., (1986). Muscle ammonia and amino acid metabolism during dynamic exercise in man, Clin. Physiol., 6(4): 365-379 (14 pages).

Kesraoui Ouki, S.; Cheeseman, C. R.; Perry, R., (1994). Natural zeolite utilisation in pollution control: A review of applications to metals’ effluents, J. Chem. Technol. Biotechnol., 59(2): 121-126 (6 pages).

Lamm, S.H.; Braverman, L.E.; Li, F.X.; Richman, K.; Pino, S.; Howearth, G., (1999). Thyroid health status of ammonium perchlorate workers: a cross-sectional occupational health study, J. Occup. Environ. Med., 41(4): 248-260 (13 pages).

Lv, G.; Wang, X.; Liao, L.; Li, Z.; He, M., (2013). Simultaneous removal of low concentrations of ammonium and humic acid from simulated groundwater by vermiculite/palygorskite columns, Appl. Clay Sci., (86): 119-124 (6 pages).

Ma, Z.; Li, Q.; Yue, Q.; Gao, B.; Li, W.; Xu, X.; Zhong, Q., (2011). Adsorption removal of ammonium and phosphate from water by fertilizer controlled release agent prepared from wheat straw, Chem. Eng. J., 171(3): 1209-1217 (9 pages).

Malekian, R.; Abedi-Koupai, J.; Eslamian, S.S.; Mousavi, S.F.; Abbaspour, K.C.; Afyuni, M., (2011). Ion-exchange process for ammonium removal and release using natural Iranian zeolite, Appl. Clay Sci., 51(3): 323-329 (7 pages).

Malovanyy, A.; Sakalova, H.; Yatchyshyn, Y.; Plaza, E.; Malovanyy, M., (2013). Concentration of ammonium from municipal wastewater using ion exchange process, Desalination, (329): 93-102 (10 pages).

Maranon, E.; Ulmanu, M.; Fernandez, Y.; Anger, I.; Castrillón, L., (2006). Removal of ammonium from aqueous solutions with volcanic tuff, J. Hazard. Mater., 137(3): 1402-1409 (8 pages).

Meshko, V.; Markovska, L.; Mincheva, M.; Rodrigues, A.E., (2001). Adsorption of basic dyes on granular acivated carbon and natural zeolite, Water Res., 35(14): 3357-3366 (10 pages).

Moradi, O., (2011). The removal of ions by functionalized carbon nanotube: equilibrium, isotherms and thermodynamic studies, Chem. Biochem. Eng. Q., 25(2): 229-240 (12 pages).

Moradi, O.; Zare, K., (2013). Adsorption of Ammonium Ion by Multi-walled Carbon Nanotube: Kinetics and Thermodynamic Studies, Fullerenes Nanotubes Carbon Nanostruct., 21(6): 449-459 (11 pages).

Ning, P.; Bart, H.J.; Li, B.; Lu, X.; Zhang, Y., (2008). Phosphate removal from wastewater by model-La (III) zeolite adsorbents, J. Environ. Sci., 20(6): 670-674 (5 pages).

Otal, E.; Vilches, L.F.; Luna, Y.; Poblete, R.; García-Maya, J.M.; Fernández-Pereira, C., (2013). Ammonium Ion Adsorption and Settleability Improvement Achieved in a Synthetic Zeolite-Amended Activated Sludge, Chin. J. Chem. Eng., 21(9): 1062-1068 (7 pages).

Patoczka, J.; Wilson, D.J., (1984). Kinetics of the desorption of ammonia from water by diffused aeration, Sep. Sci. Technol., 19(1): 77-93 (17 pages).

Periæ, J.; Trgo, M.; Vukojeviæ Medvidoviæ, N., (2004). Removal of zinc, copper and lead by natural zeolite-a comparison of adsorption isotherms, Water Res., 38(7): 1893-1899 (7 pages).

Qiao, S.; Matsumoto, N.; Shinohara, T.; Nishiyama, T.; Fujii, T.; Bhatti, Z.; Furukawa, K., (2010). High-rate partial nitrification performance of high ammonium containing wastewater under low temperatures, Bioresour. Technol., 101(1): 111-117 (17 pages).

Rahimpour, M.R.; Mottaghi, H.R., (2009). Simultaneous Removal of Urea, Ammonia, and Carbon Dioxide from Industrial Wastewater Using a Thermal Hydrolyzer” Separator Loop, Ind. Eng. Chem. Res., 48(22): 10037-10046 (10 pages).

Rahmani, A.R.; Mahvi, A.H.; Mesdaghinia, A.R.; Nasseri, S., (2004). Investigation of ammonia removal from polluted waters by Clinoptilolite zeolite, Int. J. Environ. Sci. Technol., 1(2): 125-133 (9 pages).

Randall, D.J.; Tsui, T.K.N., (2002). Ammonia toxicity in fish Ren, R.; Li, K.; Zhang, C.; Liu, D.; Sun, J., (2011). Biosorption of tetradecyl benzyl dimethyl ammonium chloride on activated sludge: Kinetic, thermodynamic and reaction mechanisms, Bioresour. Technol., 102(4): 3799-3804 (6 pages).

Rosenfeld, J.K., (1979). Ammonium adsorption in nearshore anoxic sediments, Limnol. Oceanogr., 24(2): 356-364 (9 pages).

Ryer Powder, J.E., (1991). Health effects of ammonia, Plant/ oper. Prog., 10(4): 228-232 (5 pages).

Sabbah, I.; Baransi, K.; Massalha, N.; Dawas, A.; Saadi, I.; Nejidat, A., (2013). Efficient ammonia removal from wastewater by a microbial biofilm in tuff-based intermittent biofilters, Ecol. Eng., (53): 354-360 (7 pages).

Sadegh, H.; Yari, M.; Shahryari-ghoshekandi, R.; Ebrahimiasl, S.; Maazinejad, B.; Jalili, M.; Chahardori, M., (2014a).

Dioxins: a review of its environmental risk, Pyrex J. Res. Environ. Stud., 1(1): 1-7 (7 pages).

Sadegh, H.; Shahryari-ghoshekandi, R.; Kazemi, M., (2014b). Study in synthesis and characterization of carbon nanotubes decorated by magnetic iron oxide nanoparticles, Int. Nano Lett., 4(4): 129-135 (7 pages).

Saltalý, K.; Sarý, A.; Aydýn, M., (2007). Removal of ammonium ion from aqueous solution by natural Turkish (Yýldýzeli) zeolite for environmental quality, J. Hazard. Mater., 141(1): 258-263 (6 pages).

Sarioglu, M., (2005). Removal of ammonium from municipal wastewater using natural Turkish (Dogantepe) zeolite, Sep. Purif. Technol., 41(1): 1-11 (11 pages).

Sartape, A.S.; Raut, P.D.; Kolekar, S.S., (2010). Efficient adsorption of chromium (VI) ions from aqueous solution onto a low-cost adsorbent developed from limoniaacidissima (wood apple) shell, Adsorpt. Sci. Technol., 28(6): 547-560 (14 pages).

Schroeder, J.P.; Croot, P.L.; Von Dewitz, B.; Waller, U.; Hanel, R., (2011). Potential and limitations of ozone for the removal of ammonia, nitrite, and yellow substances in marine recirculating aquaculture systems, Aquacult. Eng., 45(1): 35-41 (7 pages).

Sprynskyy, M.; Lebedynets, M.; Zbytniewski, R.; Namieoenik, J.; Buszewski, B., (2005). Ammonium removal from aqueous solution by natural zeolite, Transcarpathianmordenite, kinetics, equilibrium and column tests, Sep. Purif. Technol., 46(3): 155-160 (6 pages).

Suneetha, M.;Ravindhranath, K., (2012). Removal of ammonia from polluted waters using biosorbents derived from powders of leaves, stems or barks of some plants, Pharm. Chem., 4(1): 214-227 (14 pages).

Tanaka, J.; Matsumura, M., (2003). Application of ozone treatment for ammonia removal in spent brine, Adv. Environ. Res., 7(4): 835-845 (11 pages).

Tang, C.J.; Zheng, P.; Ding, S.; Lu, H.F., (2014). Enhanced nitrogen removal from ammonium-rich wastewater containing high organic contents by coupling with novel high-rate ANAMMOX granules addition, Chem. Eng. J., (240): 454-461 (8 pages).

Thornton, A.; Pearce, P.; Parsons, S.A., (2007a). Ammonium removal from solution using ion exchange on to MesoLite, an equilibrium study, J. Hazard. Mater., 147(3): 883-889 (7 pages).

Thornton, A.; Pearce, P.; Parsons, S.A., (2007b). Ammonium removal from digested sludge liquors using ion exchange, Water Res., 41(2): 433-439 (7 pages).

Valero, M.C.; Mara, D.D., (2007). Nitrogen removal via ammonia volatilization in maturation ponds, Water Sci. Technol., 55(11): 87-92 (5 pages).

Vassileva, P.; Voikova, D., (2009). Investigation on natural and pretreated Bulgarian clinoptilolite for ammonium ions removal from aqueous solutions, J. Hazard. Mater., 170(2): 948-953 (6 pages).

Wang, X.; Lü, S.; Gao, C.; Xu, X.; Zhang, X.; Bai, X.; Wu, L., (2014). Highly Efficient Adsorption of Ammonium onto PalygorskiteNanocomposite and Evaluation of its Recovery as a Multifunctional Slow-release Fertilizer, Chem. Eng. J., (252): 404-414 (11 pages).

Yu, X.; Wan, C.; Lei, Z.; Liu, X.; Zhang, Y.; Lee, D. J.; Tay, J. H., (2014). Adsorption of ammonium by aerobic granules under high ammonium levels, J. Taiwan Inst. Chem. Eng., 45(1): 202-206 (5 pages).

Zhang, D.; Li, W.; Huang, X.; Qin, W.; Liu, M., (2013). Removal of ammonium in surface water at low temperature by a newly isolated Microbacterium sp. strain SFA13, Bioresour. Technol., (137): 147-152 (6 pages).

Zhao, Z.; Cui, X.; Ma, J.; Li, R., (2007). Adsorption of carbon dioxide on alkali-modified zeolite 13X adsorbents, Int. J. Greenhouse Gas Control, 1(3): 355-359 (5 pages).

Zheng, H.; Han, L.; Ma, H.; Zheng, Y.; Zhang, H.; Liu, D.; Liang, S., (2008). Adsorption characteristics of ammonium ion by zeolite 13X, J. Hazard. Mater., 158(2): 577-584 (8 pages).

Zheng, Y.; Liu, Y.; Wang, A., (2011). Fast removal of ammonium ion using a hydrogel optimized with response surface methodology, Chem. Eng. J., 171(3): 1201-1208 (8 pages).

Letters to Editor

GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.