Document Type : CASE STUDY

Authors

Department of Civil Engineering, National Institute of Technology Manipur, Langol Road, Lamphelpat, Imphal, Manipur, India

Abstract

BACKGROUND AND OBJECTIVE: Soil erosion is considered one of the major indicators of soil degradation in our environment. Extensive soil erosion process leads to erosion of nutrients in the topsoil and decreases in fertility and hence productivity. Moreover, creeping erosion leads to landslides in the hilly regions of the study area that affects the socio-economics of the inhabitants. The current study focuses on the estimation of soil erosion rate for the year 2011 to 2019 and projection for the years 2021, 2023 and 2025.
METHODS: In this study, the Revised Universal Soil Loss Equation is used for estimation of soil erosion in the study area for the year 2011 to 2019. Using Artificial Neural Network-based Cellular Automata simulation, the Land Use Land Cover is projected for the future years 2021, 2023 and 2025. Using the projected layer as one of the spatial variables and applying the same model, Soil Erosion based on Revised Universal soil loss equation is projected for a corresponding years.
FINDINGS: For both cases of projection, simulated layers of 2019 (land use land cover and soil erosion) are correlated with the estimated layer of 2019 using actual variables and validated. The agreement and accuracy of the model used in the case land use are 0.92 and 96.21% for the year 2019. The coefficient of determination of the model for both simulations is also observed to be 0.875 and 0.838. The simulated future soil erosion rate ranges from minimum of 0 t/ha/y to maximum of 524.271 t/ha/y, 1160.212 t/ha/y and 783.135 t/ha/y in the year 2021, 2023 and 2025, respectively.
CONCLUSION: The study has emphasized the use of artificial neural network-based Cellular automata model for simulation of land use and land cover and subsequently estimation of soil erosion rate. With the simulation of future soil erosion rate, the study describes the trend in the erosion rate from past to future, passing through present scenario. With the scarcity of data, the methodology is found to be accurate and reliable for the region under study.

Graphical Abstract

Linking the past, present and future scenarios of soil erosion modeling in a river basin

Highlights

  • An increasing trend is observed in ‘No Erosion’; ‘Slight Erosion’ and ‘Moderate Erosion’ class and the decreasing trend is observed in ’High Erosion’ and ‘Intense Erosion’ class;
  • The Northern and South-Eastern region of the basin is prone to soil erosion due to deforestation activity such as jhum cultivation in the hilly region;
  • Future soil erosion rate is likely to show a decrement as the policymakers and environmental organization starts to implements various afforestation and forest conservation schemes, which is a positive sign for the region;
  • Conservative measures and structures such as Bunding, Bench terracing, Contour farming, etc are also implemented for overcoming the loss in soil quality;
  • It seems that there is a good potential for developing soil quality and as a result, it can improve the socio-economic situation of the society.

Keywords

Main Subjects

OPEN ACCESS

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit: http://creativecommons.org/licenses/by/4.0/

Citation Metrics & Captures

Google Scholar | Scopus Web of Science PlumX Metrics Altmetrics Mendeley |

Letters to Editor

GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.

CAPTCHA Image