SHORT COMMUNICATION

Carbon sequestration rate in sediment mangroves from natural and rehabilitated mangroves

D. Ariyanto¹,²,⁎, D. Pringgenies²

¹ Research Center for Oceanography, National Research and Innovation Agency, Jakarta, Indonesia
² Department of Marine Science, Faculty of Fisheries and Marine Science, Diponegoro University, Tembalang, Semarang, Central Java, 50275, Indonesia

BACKGROUND AND OBJECTIVES: A major function of mangroves is carbon sequestration in sediment. This study aimed to determine differences in carbon content in sediments in various types of mangroves and environmental parameters.

METHODS: This study was carried out in Pesawaran as a natural mangrove and in South Lampung as rehabilitated mangrove in Indonesia. Purposive sampling method was used by considering the types of mangroves at the locations. Sediment sampling was taken using a polyvinyl chloride pipe with a diameter of 47.46 millimeters and a height of 30 centimeters. The sediment parameters measured were bulk density, carbon stock, and sequestration. Environmental parameters measured included sediment texture, potential of hydrogen, temperature, salinity, and total dissolved solids. A statistical analysis was conducted using the principal component analysis to determine the relationship between the organic carbon stock and the environmental parameters.

FINDINGS: The study results showed that natural mangroves (Pesawaran) had a higher organic carbon value at 2.2 ± 0.32 percent than rehabilitated mangroves (South Lampung) at 0.9 ± 0.25 percent. The principal component analysis results revealed that organic carbon, carbon dioxide equivalent, carbon stock, and carbon sequestration had positive correlation characteristics influenced by salinity, silt, and clay, while negative correlation characteristics were affected by temperature, total dissolved solids, and sand. The distribution of sediment texture tended to show more silt in rehabilitated mangroves, while natural mangroves tended to have the same composition between sand and silt. The potential of hydrogen conditions in natural and rehabilitated mangroves showed no significant differences in values. The salinity in Pesawaran, which was classified as a natural mangrove, was higher due to the influence of the tides and was directly facing the shoreline. Meanwhile, in South Lampung, which was categorized as a rehabilitated mangrove, the salinity was lower due to the long dry season and the canals being unable to support the water entering the mangroves.

CONCLUSION: The organic carbon content at the research locations was influenced by the older age of the Rhizophora stylosa compared to that of the Rhizophora mucronata and Ceriop tagal types of mangroves. The carbon sequestration rate values showed 1.65–3.14 for natural mangroves and 0.29–1.25 for rehabilitated mangroves, thus establishing that the rate is higher (2–3 times) in natural mangroves than in rehabilitated mangroves.

ARTICLE INFO

Article History:
Received 25 December 2023
Revised 01 April 2024
Accepted 06 May 2024

Keywords:
Mangrove
Organic carbon
Rhizophoraceae
Sediment
Water quality

ABSTRACT

BACKGROUND AND OBJECTIVES: A major function of mangroves is carbon sequestration in sediment. This study aimed to determine differences in carbon content in sediments in various types of mangroves and environmental parameters.

METHODS: This study was carried out in Pesawaran as a natural mangrove and in South Lampung as rehabilitated mangrove in Indonesia. Purposive sampling method was used by considering the types of mangroves at the locations. Sediment sampling was taken using a polyvinyl chloride pipe with a diameter of 47.46 millimeters and a height of 30 centimeters. The sediment parameters measured were bulk density, carbon stock, and sequestration. Environmental parameters measured included sediment texture, potential of hydrogen, temperature, salinity, and total dissolved solids. A statistical analysis was conducted using the principal component analysis to determine the relationship between the organic carbon stock and the environmental parameters.

FINDINGS: The study results showed that natural mangroves (Pesawaran) had a higher organic carbon value at 2.2 ± 0.32 percent than rehabilitated mangroves (South Lampung) at 0.9 ± 0.25 percent. The principal component analysis results revealed that organic carbon, carbon dioxide equivalent, carbon stock, and carbon sequestration had positive correlation characteristics influenced by salinity, silt, and clay, while negative correlation characteristics were affected by temperature, total dissolved solids, and sand. The distribution of sediment texture tended to show more silt in rehabilitated mangroves, while natural mangroves tended to have the same composition between sand and silt. The potential of hydrogen conditions in natural and rehabilitated mangroves showed no significant differences in values. The salinity in Pesawaran, which was classified as a natural mangrove, was higher due to the influence of the tides and was directly facing the shoreline. Meanwhile, in South Lampung, which was categorized as a rehabilitated mangrove, the salinity was lower due to the long dry season and the canals being unable to support the water entering the mangroves.

CONCLUSION: The organic carbon content at the research locations was influenced by the older age of the Rhizophora stylosa compared to that of the Rhizophora mucronata and Ceriop tagal types of mangroves. The carbon sequestration rate values showed 1.65–3.14 for natural mangroves and 0.29–1.25 for rehabilitated mangroves, thus establishing that the rate is higher (2–3 times) in natural mangroves than in rehabilitated mangroves.

DOI: 10.22034/gjesm.2024.04.***

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
INTRODUCTION
Mangroves are characterized as unique plants located between land and sea and can be found in the tropics and subtropics. Mangroves are known to have various benefits and play an important role in maintaining the balance of the mangrove ecosystem. They have an ecological function as a habitat for fish and gastropods (Ariyanto et al., 2018a; Ariyanto et al., 2020) and socio-economic function for ecotourism and community participation (Spalding and Parrett, 2019; Listiana and Ariyanto, 2024). Mangroves also have high amino acid contents (Ningsih et al., 2020) and biotechnological potential as an antibacterial (Pringgenies et al., 2021), antifungal (Pringgenies et al., 2023), and antioxidant (Sibero et al., 2022). Their reproductive organs in the form of leaves also have various proximate contents (Ariyanto et al., 2019a). Natural mangroves are mangroves that grow naturally and are carried by tides and sea currents, while rehabilitation mangroves are mangroves that are planted directly through nurseries carried out by the community, non-governmental organizations (NGOs), and the government. Mangroves also play an important role in storing carbon, regulating global climate change, and sediment accretion (Setyadi et al., 2021). The sustainability of the mangrove ecosystem is supported by the tidal cycle of seawater and fresh water input from land. Rhizophora mucronata had the highest survival rate of 67 percent but the lowest growth rate, while Avicennia alba and Avicennia marina had lower survival rates of 35 percent (%) and 21% (van Blijsterveldt et al., 2022), respectively. The influence of sea tides brings nutrients that can be used for the sustainability of the mangrove ecosystem and improve mangrove growth. Furthermore, mangroves cannot grow optimally due to various factors, including high salinity (> 40 practical salinity units), high temperatures as 37.5–42.0 degrees Celsius (°C), reduced rainfall, and limited fresh water supply (Almahasheer et al., 2017). The mangrove ecosystem has the ability to store organic carbon (OC). Research also showed the ability of mangroves to store 692.8 ± 23.1 megagrams of carbon per hectare (Mg/ha) (Alongi, 2022). 76.5% is stored in OC sediments (Kida et al., 2021), and 8–15% of OC is buried in mangroves (Breithaupt et al., 2012). Research in Karimunjawa-Kemujan, Indonesia, showed the above-ground carbon potential of mangroves ranges from 8 to 328 Mg/ha (Wirasatriya et al., 2022). The level of OC storage is influenced by various activities in the mangrove ecosystem. Utilization of mangrove ecosystems for shrimp ponds results in a decrease in soil OC (Eid et al., 2019) and vulnerability to the influence of nutrients and organic matter runoff (Friess et al., 2015). OC storage is also influenced by various factors such as mangrove type, maturity age, species distribution, and soil conditions (Alongi, 2012). In general, carbon sequestration potential increases with increasing plant size and age (Alongi, 2012). Another research also revealed that the contribution of OC caused an increase of 31% due to area protection and 25% due to the burial of OC sediments (Chu et al., 2020). OC comes from various sources including water and mangrove litter (Carreira et al., 2016), and vegetation structure and root density function as sediment stabilizers (Kristensen et al., 2008; Alongi, 2014). The process of leaf decomposition of various mangrove types also supports the contribution of nutrients to the mangrove ecosystem (Ariyanto et al., 2018b). The salinity variation in the mangrove ecosystem in the range of 7.88–30.70 practical salinity units (psu) contributes to OC storage (Yan et al., 2023). Another research (Kamyab et al., 2024) showed carbon sequestration, 65% contributed to C stock sediment (Soeprobowati et al., 2024), and the sequestration rate (CSR) was found dominantly in soil in mangrove ecosystems (Trettin et al., 2021). Mangroves are important for carbon stocks and potential emissions due to mangrove deforestation (Hamilton and Friess, 2018). Climate change and anthropogenic disturbances impact sequestration and carbon storage (Grelier et al., 2017; Pérez et al., 2017). Preventing mangrove loss through natural and rehabilitated mangroves is an effective strategy for climate change mitigation. This hypothesis is about how carbon sequestration differs between natural and rehabilitated mangrove types in mangrove ecosystem sediments and the factors that influence it. This study aimed to determine the relationship between OC sediment content in various types of natural and rehabilitated mangroves and environmental parameters during 2023 in Lampung, Indonesia.

MATERIALS AND METHODS

Study location
This study was conducted from November to December 2023 in Pesawaran as 5.57185° north (N), 42.0025° east (E), Lampung, South Sumatra, Indonesia. The level of OC storage is influenced by various activities in the mangrove ecosystem. Utilization of mangrove ecosystems for shrimp ponds results in a decrease in soil OC (Eid et al., 2019) and vulnerability to the influence of nutrients and organic matter runoff (Friess et al., 2015). OC storage is also influenced by various factors such as mangrove type, maturity age, species distribution, and soil conditions (Alongi, 2012). In general, carbon sequestration potential increases with increasing plant size and age (Alongi, 2012). Another research also revealed that the contribution of OC caused an increase of 31% due to area protection and 25% due to the burial of OC sediments (Chu et al., 2020). OC comes from various sources including water and mangrove litter (Carreira et al., 2016), and vegetation structure and root density function as sediment stabilizers (Kristensen et al., 2008; Alongi, 2014). The process of leaf decomposition of various mangrove types also supports the contribution of nutrients to the mangrove ecosystem (Ariyanto et al., 2018b). The salinity variation in the mangrove ecosystem in the range of 7.88–30.70 practical salinity units (psu) contributes to OC storage (Yan et al., 2023). Another research (Kamyab et al., 2024) showed carbon sequestration, 65% contributed to C stock sediment (Soeprobowati et al., 2024), and the sequestration rate (CSR) was found dominantly in soil in mangrove ecosystems (Trettin et al., 2021). Mangroves are important for carbon stocks and potential emissions due to mangrove deforestation (Hamilton and Friess, 2018). Climate change and anthropogenic disturbances impact sequestration and carbon storage (Grelier et al., 2017; Pérez et al., 2017). Preventing mangrove loss through natural and rehabilitated mangroves is an effective strategy for climate change mitigation. This hypothesis is about how carbon sequestration differs between natural and rehabilitated mangrove types in mangrove ecosystem sediments and the factors that influence it. This study aimed to determine the relationship between OC sediment content in various types of natural and rehabilitated mangroves and environmental parameters during 2023 in Lampung, Indonesia.
105.24189° east (E) for the natural mangrove location and in South Lampung for the rehabilitated mangrove location in Lampung Province, Indonesia (Fig. 1). The study was divided based on the mangrove types in both the study locations, i.e., the mangroves *Rhizophora mucronata* Lamk, *Rhizophora stylosa* Griff, and *Ceriop tagal* C.B. Rob. This location of research has a tropical climate with high rainfall.

Collection

The selection of mangrove types in the research was based on the type of mangrove dominant at the natural and rehabilitated mangrove locations, namely *Rhizophora stylosa* Griff, *R. mucronata* Lamk, and *Ceriop tagal* C.B. Rob. Sources for mangrove rehabilitation come from locations around natural mangroves. Sediment sampling was carried out using a PVC pipe with a diameter of 47.46 millimeters (mm) and a depth of 30 centimeters (cm). All sediment samples were taken to the laboratory for weighing and drying until the samples became constant. The parameter of the texture condition of each mangrove type was also measured. Physical parameter measurements such as the potential of hydrogen (pH), temperature, salinity, and total dissolved solids (TDS) conditions were performed directly at the study locations using water quality multiparameter equipment.

Data analysis

Carbon stock in mangrove sediments is measured using Eq. 1 (Howard et al., 2014):

\[
\text{Carbon stock (Mg/C/ha) = sediment bulk density as gram per cubic meter (g/cm}^3\text{) x C % x depth (cm)} \tag{1}
\]

The carbon stock is then converted into equivalent carbon dioxide (eCO\(_2\)/ha) using Eq. 2 (Iticha, 2017):

\[
\text{CO}_2e(\text{MgCO}_2) = 3.67 \times \text{Total carbon stock} \tag{2}
\]

The conversion of carbon (C) to carbon dioxide (CO\(_2\)) used a carbon weight of 3.67 based on the molecular weight ratio of CO\(_2\) (44) with C (12); thus, 1 Mg = 3.67 magnesium carbonate (MgCO\(_2\)) was absorbed.

The average carbon sequestration rate (CSR) was determined based on the mean of soil bulk density (SBD), C, and sediment of 0.28 centimeters per year (cm/y) using Eq. 3 (Alongi, 2014):

\[
\text{CSR (gC/y)} = \text{mean SBD x mean } \% \text{ C x sequestration rate (SR)} \tag{3}
\]

Statistical analysis

Statistical analysis was conducted using statistical software for excel (XLSStat) to determine the relationship between the sediment OC and the...
RESULTS AND DISCUSSION

Table 1 shows the sediment OC content, bulk density, carbon stock, and carbon sequestration in both natural and unnatural mangroves. The OC content in the two locations showed differences. Natural mangroves (Pesawaran) showed higher OC values at 2.2 ± 0.32% than rehabilitated mangroves (South Lampung) at 0.9 ± 0.25%. Based on the mangrove type, the higher OC content was also obtained in natural mangroves compared to rehabilitated mangroves. The highest OC content was found in the *R. stylosa* species in both natural and rehabilitated mangroves.

The OC content of the three mangrove types was *R. stylosa > C. tagal > R. mucronata* both in natural and rehabilitated mangroves (Table 1). The OC content at the study locations was influenced by the older age of *R. stylosa* compared to that of *R. mucronata* and *C. tagal*. Compared to other research, the current study showed that the OC content of mangroves at these locations was lower. Another research also reported that high OC stocks are caused by mangrove maturity and stand age (Tang et al., 2023). The OC content values also showed differences in sediment, which are influenced by differences in vegetation communities of 736.8 ± 169 grams per square meter per year (g/m²/yr) (Setyadi et al., 2021) and increase with increasing mangrove age (Carnell et al., 2022). This aligns with another research finding that the increase in OC content in sediment was caused by several factors, such as soil depth and increasing mangrove age of 12, 24, and 48 years (Chen et al., 2018). The OC content in this study was lower compared to that of 16 ± 7% in another study (Chu et al., 2023). Mangroves can contribute around 15–19% OC to sediment (Chu et al., 2020). Both natural and rehabilitated mangroves showed the highest and lowest carbon sequestration rate (CSR) values of *R. stylosa > R. mucronata > C. tagal*. The CSR values were 1.65–3.14 for natural mangroves and 0.29–1.25 for rehabilitated mangroves. Global CSR showed a value of 17.4 gC/cm²/y (Alongi, 2012). The CSR value of this study is not too far from that obtained in other studies: 4.54 gC/cm²/y in Nigeria (Nwankwo et al., 2023) and 4.0 gC/cm²/y in Saudi Arabia (Eid et al., 2019). Previous research further revealed that the soil organic carbon (SOC) content in mangrove forests was higher than in shrimp ponds by 147% (Eid et al., 2019). The increase in SOC is also affected by various factors such as biomass, diameter at breast height (DBH), tree height, and age of mangroves for *S. apetala* (Wang et al., 2019; Wang et al., 2021; Pham et al., 2017). High TOC content was also found in the surface area of mangroves (Perera and Amarasinghe, 2019). The level of CS in natural mangroves is higher than in rehabilitated mangroves. Natural mangrove CS showed 16.00–164.51 Mg C/ha, and planted mangrove showed 3.8 MgC/ha/y (Monga et al., 2022). The existence of carbon stocks in rehabilitated mangroves has an equivalent value for 25 years, considering that the impact of disturbance is controlled and managed (Sasmito et al., 2020). Factors that significantly impact CSR include tree varies, species richness, forest composition, and local condition.

<table>
<thead>
<tr>
<th>Location</th>
<th>Mangrove</th>
<th>OC (%)</th>
<th>SOC (g/cm³)</th>
<th>Carbon dioxide equivalent (Mg CO₂/ha)</th>
<th>Carbon stock (Mg C/ha)</th>
<th>Carbon sequestration rate MgC/cm²/y</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pesawaran</td>
<td>R. stylosa</td>
<td>2.52</td>
<td>0.201</td>
<td>55.19</td>
<td>15.21</td>
<td>3.14</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>R. mucronata</td>
<td>1.91</td>
<td>0.223</td>
<td>46.90</td>
<td>12.77</td>
<td>2.9</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>C. tagal</td>
<td>2.37</td>
<td>0.151</td>
<td>39.28</td>
<td>10.70</td>
<td>1.65</td>
<td>This study</td>
</tr>
<tr>
<td>South Lampung</td>
<td>R. stylosa</td>
<td>1.19</td>
<td>0.136</td>
<td>10.89</td>
<td>2.99</td>
<td>1.25</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>R. mucronata</td>
<td>0.73</td>
<td>0.185</td>
<td>24.19</td>
<td>6.59</td>
<td>0.41</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>C. tagal</td>
<td>0.79</td>
<td>0.109</td>
<td>9.52</td>
<td>2.59</td>
<td>0.29</td>
<td>This study</td>
</tr>
<tr>
<td>Natural</td>
<td>Indonesia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kusumaningtyas et al., 2019</td>
</tr>
<tr>
<td>Rehabilitated</td>
<td>Indonesia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Soeprobowati et al., 2024</td>
</tr>
<tr>
<td>Restored</td>
<td>Philippines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Salmo et al., 2019</td>
</tr>
</tbody>
</table>
traits (Augusto et al., 2022). Soil characteristics such as SOC, pH, sand, silt, and clay content also affect carbon (Mensah et al., 2023). Climate, salinity, and forest structure also affect carbon stocks (Kaufman et al., 2020). Fig. 2 shows the distribution of sediment textures in various mangrove types in natural and unnatural mangrove conditions. The distribution of sediment textures was sand, silt, and clay sediments, which ranged from 4.29 ± 0.18%, 84.87 ± %, and 10.83 ± 0.87% in unnatural mangroves, respectively, while in natural mangroves, it ranged from 42.13 ± 5.03%, 54.59 ± %, and 3.27 ± 0.36%, respectively. The two research locations showed differences in sediment texture: unnatural mangroves (South Lampung) tended to have the largest composition of silt, while natural mangroves (Pesawaran) tended to have the same composition between sand and silt. Table 1 also shows that the CSR in natural mangroves was higher than in rehabilitated mangroves.

In terms of mangrove type, it was also revealed that the distribution of sediment texture tended to involve more silt in rehabilitated mangroves, while natural mangroves tended to have the same composition between sand and silt. The conditions of natural and rehabilitated mangroves also illustrated that mangroves can grow and develop well with the support of a finer texture, i.e., silt. However, a sandy texture is also needed for further growth to strengthen and stabilize the roots. Table 2 shows various environmental parameters, including pH, salinity, temperature, and TDS. The pH parameter showed that it ranged from 6.2–7.01 in natural mangroves and from 6.6–7.13 in rehabilitated mangroves. The salinities were between 21.3–23 psu in natural mangroves and between 23–27.3 psu in unnatural mangroves. The temperature ranged from 28–31°C in natural mangroves and from 32–33°C in unnatural mangroves. Meanwhile, TDS was between 283–358 parts per million (ppm) in natural mangroves and between 917–976 ppm in rehabilitated mangroves.

The pH conditions in natural and rehabilitated mangroves showed no significant differences in values. The salinity in Pesawaran, which was classified as a natural mangrove, was higher due to the influence of the tides and directly facing the shoreline. Meanwhile, in South Lampung, which was categorized as a rehabilitated mangrove, the salinity was lower due to the long dry season and the canals being unable to support the water entering the mangroves.

The principal component analysis (PCA) result revealed that the total diversity of F1 and F2 was 93.13%, consisting of F1 diversity of 76.95% and F2 diversity of 16.18%. PCA 1 with factor loading (natural mangrove
S1 and rehabilitated mangrove S2) showed a high positive correlation, namely OC (0.909), CO2 (0.980), Cstock (0.985), and CSR (0.861), with salinity (0.986), silt (0.978), and clay (0.946), and a negative correlation with temperature (-0.861) and TDS (-0.968). PCA 2 showed a correlation of bulk density (BD) (0.764) with pH (0.928) (Fig. 3). Salinity is an important factor in influencing the existence and growth of mangroves and determining mangrove zoning (Nguyen et al., 2015). Another research also reported that the mangrove C. tagal was able to grow in the salinity range of 40–60 practical salinity units (psu) and experienced growth inhibition beyond that (Prihantono et al., 2023). Several studies also reported that mangroves responded to dry conditions in mangrove rehabilitation sites by slowing growth rates and tending to require more water. The response of mangroves to high soil salinity resembles the response to drought, including slow growth rates, low stomatal conductance, and increased water use efficiency (Lovelock et al., 2006). This is different from the condition of natural mangroves where there are channels or canals that come from both the sea and land, causing good and effective mangrove growth. The input of fresh water through canals or channels can also reduce high salinity and cause the recovery of mangroves, which contributes to the growth of seedlings (Pérez-Ceballos et al., 2020; Devaney et al., 2021). In Fig. 3, the loading value describes the strength of the principal component analysis (PCA) values. OC, CO2, C, and CSR had positive correlation characteristics affected by salinity, silt, and clay. Meanwhile, negative correlation characteristics were influenced by temperature, TDS, and sand. The SOC relationship was influenced by pH; for example, a higher SOC value resulted in a higher pH and vice versa. The C content in mangrove ecosystems depends on various sources, including mangrove composition, soil type, geographical location, tides, and the influence of human activities (Gao et al., 2019). Organic matter content is a high-relationship physicochemical factor that influences mangrove productivity (Ariyanto et al., 2019b). This research also revealed that high clay texture had an impact on high SOC content compared to low clay texture. The high SOC was supported by a high clay composition compared to low clay (Zou et al., 2023). Cs had positive characteristics influenced by salinity. Previous research has confirmed that the number of trees and tree trunk diameter influence carbon sequestration in addition to pH and salinity factors (Hayati et al., 2023). SOC sequestration depended on the regional primary productivity, dynamic-geomorphological conditions, and climate-water environment (Yan et al., 2024) and 80% in sediment (0–1 m) (Rani et al., 2021). Other factors that influence the sustainability of mangrove ecosystems include the availability of nutrients (nitrogen and phosphorus) needed for the growth and survival...
of mangroves (Reef et al., 2010) and the existence of locations and zoning that are suitable for vegetation regeneration (Uche et al., 2023). For their survival and stability, mangroves also require air quality such as salinity (Chen and Wang, 2017), fresh water (Santini et al., 2015), variations in rainfall and tidal influences (Prihantono et al., 2022), and hydrodynamic processes (Cannon et al., 2020).

CONCLUSION

This study found that natural mangroves had higher OC and soil organic carbon contents compared to those in unnatural mangroves. The OC, CO\textsubscript{2} equivalent, carbon, and carbon sequestration had positive correlation characteristics influenced by salinity, silt, and clay, while negative correlation characteristics were affected by temperature, TDS and sand. The pH parameter showed that it ranged from 6.2–7.01 in natural mangroves and from 6.6–7.13 in rehabilitated mangroves. The salinities were from 21.3–23 psu in natural mangroves and from 23–27.3 psu in rehabilitated mangroves. The temperature ranged from 28–31°C in natural mangroves and from 32–33°C in rehabilitated mangroves. Meanwhile, TDS was from 283–358 parts per million in natural mangroves and from 917–976 parts per million in rehabilitated mangroves. Several studies also reported that mangroves responded to dry conditions in rehabilitated mangrove sites by slowing growth rates and tending to require more water. The soil OC relationship was influenced by pH, as a higher soil OC value resulted in a higher pH and vice versa. In natural mangroves, the high-value soil OC was influenced by salinity, silt, and clay, while in unnatural mangroves, it was influenced by temperature, sand, and TDS. The older age of R. stylosa compared to that of R. mucronata and C. tagal also influenced the OC content in both natural and rehabilitated mangroves. Potential implications of differences in carbon absorption levels between natural mangroves and rehabilitated mangroves for climate change mitigation strategies, namely that both types of growth and development are found to be dominant in sediment storage. This can prevent the risk of sudden carbon losses. The carbon sequestration rate of natural mangroves are higher (2–3 times) than that of rehabilitated mangroves. The presence of sediment in the mangrove ecosystem is very important because it determines the suitability of mangrove zoning. Sediment accumulates in mangrove vegetation if the mangrove plants—both natural and rehabilitated—are in good condition. This cannot be separated from the tidal process, which has an impact on ecological processes in the mangrove ecosystem.

AUTHOR CONTRIBUTIONS

D. Ariyanto, the corresponding author, collected data, interpreted the results, and prepared the final manuscript. D. Pringgenies interpreted the results, wrote the manuscript, and corrected the manuscript. All authors have equal contributions.

ACKNOWLEDGMENT

The authors thank Diponegoro University for the Postdoctoral Program 2023, World Class University Diponegoro University [No: 1161/UN8.A4/KU/X/2023] and the Research Center for Oceanography, National Research and Innovation Agency (BRIN), which supported this study.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interests regarding the publication of this manuscript. In addition, the ethical issues, including plagiarism, informed consent, misconduct, data fabrication and/or falsification, double publication and/or submission, and redundancy have been completely observed by the authors.

OPEN ACCESS

©2024 The author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third-party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit: http://creativecommons.org/licenses/by/4.0/
Natural and rehabilitated mangrove

ABBREVIATIONS

% Percent
°C Degree Celsius
BD Bulk density
gC/cm²/y Gram carbon centimeter per year
cm Centimeter
Cm/y Centimeter per year
CO₂e Carbon dioxide equivalent
CSR Carbon sequestration rate
CS Carbon stock
D Depth
DBH Diameter at breast height
E East
eCO₂/ha Equivalent carbon dioxide
g/m²/y Gram per square meter per year
kg Kilogram
MgC/ha Megagram carbon per hectare
MgCO₂ Magnesium carbonate
MgCO₂/ha Megagram carbon dioxide per hectare
Mg/ha Megagram per hectare
NGOs non-governmental organizations
mm millimeter
N nitrogen
North
P phosphorus
pH potential of hydrogen
ppm Part per million
psu Partial salinity unit
OC Organic carbon
PCA Principal component analysis
PVC Polyvinyl Chloride
SBD sediment bulk density
SOC Soil organic carbon
SR Sequestration rate
TDS Total dissolved solid
XLstat Statistical software for excel

REFERENCES

Devaney J.L., Marone D., McElwain J.C., 2021. Impact of soil salinity on mangrove restoration in a semiarid region: a case study from

GJESM Publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
D. Ariyanto and D. Pringgenies

Tree Physiol., 30 (9):1148-1160 (13 pages).

HOW TO CITE THIS ARTICLE

DOI: 10.22034/gjesm.2024.04.***

URL: ***