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BACKGROUND AND OBJECTIVES: Greenhouse gas emissions are the primary cause of 
global warming. Under the Paris Agreement, all countries have developed programs 
to reduce anthropogenic impact on the environment. In the petrochemical industry, 
for example, isoprene, is a major contributor to the production of carbon dioxide, 
generating large amounts of acidic and hydrocarbon gases that are burned and released 
into the atmosphere. This study aimed to investigate the absorption of greenhouse gases 
from isoprene production by the marine microalgae Isochrysis galbana and Tetraselmis 
suecica, as well as the freshwater microalgae Chlorella vulgaris.
METHODS: Microalgae cells were cultured in a bioreactor. The grown microalgae strains 
and mineralized water were fed to the bioreactor. Gases discharged from isoprene 
production were passed through the bioreactor. Inlet and outlet gas compositions were 
monitored by chromatography. 
FINDINGS: Absorption of gases discharged from isoprene production by microalgae was 
studied for the first time. Chlorella vulgaris microalgae reduced methane and carbon 
dioxide contents by an average of 20 times. A mixture of microalgae Tetraselmis suecica 
and Isochrysis galbana reduced methane and carbon dioxide contents by a factor of 10 
but completely absorbed hydrocarbon gases from methane to pentane.
CONCLUSION: The results indicate that microalgae cultivation can be used as a reliable 
and stable technology for the biofixation of the gases discharged in isoprene production. 
This technology can eliminate the combustion stage of hydrocarbon gases in isoprene 
production and significantly reduce carbon dioxide emissions into the atmosphere.
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INTRODUCTION
Anthropogenic blow-off gases emitted into the 

atmosphere by industrial and energy enterprises 
significantly increase the amount of greenhouse 
gases. The greenhouse gas used to record the 
emissions of fossil fuel combustion products into the 
atmosphere is carbon dioxide (CO2). The emissions 
of CO2 determine the amount of greenhouse 
gases according to the Kyoto Protocol and other 
agreements. According to numerous studies and 
obtained technical solutions (Mitsubishi Heavy Ind. 
Ltd., 1991; Yilong et al., 2015), the concentration 
of CO2 in the atmosphere has already exceeded 
420 ppm in April 2021. The International Group of 
Experts on Climate Change predicts that by 2100, 
CO2 concentrations will reach 570 ppm, leading to an 
increase in the average temperature of the Earth’s 
surface by 1.9 degrees Celsius (°C) (Dissanayake 
et al., 2019). It has been reported (Li et al., 2023) 
that about 60 percent (%) of the Earth’s inhabitants 
experience record-high annual temperatures. 
Excessive CO2 emissions are generally considered 
the primary cause of global warming. Moreover, CO2 
emissions account for about 80% of all greenhouse 
gases. Human activities are the main cause of CO2 
emissions into the atmosphere, with fossil fuel 
combustion, agricultural activities, and industrial 
processes (Hussain et al., 2018) playing a leading 
role. In particular, since the Industrial Revolution, the 
use of fossil fuels in the power generation sector has 
been the main source of CO2 emissions (Ahmed et al., 
2019). The Paris Agreement on reducing greenhouse 
gas emissions has been signed by most countries. 
Microalgae are a good choice for use in the biological 
capture of CO2 and other greenhouse gases because 
they are universal photosynthetic microorganisms 
and, most importantly, can capture the heat and 
fine dust emitted by blow-off and exhaust gases 
(Kamyab et al., 2019). The high emissions in the 
Northern Hemisphere are due to the large number 
of industrial establishments in Eurasia and North 
America. Moreover, large populations and big-scale 
transportation systems consume significant amounts 
of energy in this part of the world. There is another 
important factor, which is the climatic specialties 
of the regions that require a long heating season. 
In addition, climate affects all aspects of people’s 
lives, including energy consumption (Arredondo, 
2023), the efficiency of machinery, and industry in 

general (Farajzadeh, 2023). Anthropogenic blow-
off gas emitted by industrial and energy enterprises 
significantly increases the amount of greenhouse 
gases in the atmosphere. These greenhouse gases 
include carbon oxides, water vapor, sulfur oxides, 
nitrogen oxides, polycyclic aromatic hydrocarbons, 
fluoride compounds, and solid particles (Laptev et al., 
2022). Currently, several methods have been proposed 
for the disposal of carbon dioxide. Some of these 
methods have been successfully implemented. An 
example is the possibility of using compressed carbon 
dioxide as dry ice. However, this technology cannot be 
fully utilized as CO2 returns to the atmosphere during 
its use (De Morais et al., 2007). Other methods of CO2 
waste utilization include a variety of physicochemical 
methods; however, the main problem common to 
all options is the cost of CO2 absorption technology. 
Absorption, transportation, and storage of CO2 are 
very costly, thus undermining the cost-effectiveness 
of the projects. Currently, the biological absorption of 
CO2 through photosynthesis using Chlorella vulgaris 
is the only promising method. One way to reduce 
CO2 levels is by passing the exhaust gases through 
photobioreactors containing microalgae (Aryal et 
al., 2021). The vital role and main life activity of 
microalgae is photosynthesis, during which the 
microalgae consume CO2 and solar radiation energy. 
In addition, the biomass remaining during and after 
cultivation can be used for the biotechnological 
production of biofuels, fertilizers, etc (Samimi et al., 
2023). Microalgae are a promising source of biomass 
thanks to their fast reproductive rates. They can 
produce up to 70 tons per hectare per year (t/ha/y) 
of biomass when using open ponds (even though 
poplar biomass is 10–13 t/ha/y) (Balagurumurthy et 
al., 2013). An important characteristic of microalgae 
is that they do not require land cultivation or 
significant expenditure on freshwater (either salt-
rich water or wastewater can be used). Furthermore, 
they can absorb significant amounts of CO2 (Culaba et 
al., 2020). Microalgae have been found to have the 
highest CO2 fixation efficiency compared to terrestrial 
plants (Cheah et al., 2015). This can be explained by 
the faster rate at which substances are transported 
through algal cell membranes (Zeng et al., 2012) than 
through plant capillaries, rapid metabolism, and cell 
division (on average, each cell divides once a day), 
and the ability of unicellular organisms to mutate 
and adapt to environmental conditions (Chen et 



735

Global J. Environ. Sci. Manage., 10(2): 733-742, Spring 2024

al., 2013). Microalgae have been shown to capture 
approximately 1.8 kilogram (kg) of carbon dioxide 
per kilogram of microalgae (kg-CO2/1 kg) of biomass 
produced. Microalgae biomass is a source of lipids 
and carbohydrates (CHO) and is a production material 
for alternative motor fuels (biodiesel and bioethanol) 
(Culaba et al., 2020), hydrogen (H2), propylene glycol 
(Otsuka, 1961), formic acid, cosmetics, and some 
other products (Arenas et al., 2016). The combination 
of biotechnological and catalytic processes to obtain 
such products is carried out in the bioprocessing of 
complex plant materials (Gong et al., 2014; Samimi and 
Nouri, 2023). Taking these into account, microalgae 
cultivation technology can be used to absorb blow-
off gases to obtain useful by-products and minimize 
greenhouse gas, heat, and dust emissions into the 
atmosphere (Slegers et al., 2020). The main objective 
of this research was to use microalgae culture to 
develop industrial blow-off gas utilization technology 
in order to reduce CO2 emissions. This technology 
can significantly reduce greenhouse gas emissions 
from the petrochemical industry, hence reducing 
anthropogenic impact on the environment. This 
work studied the absorption capacity of the marine 
microalgae Tetraselmis suecica and Isochrysis galbana, 
as well as the freshwater Chlorella vulgaris during gas 
purification from the catalytic processing of isoprene 
petrochemical production from CO2-containing 
impurities of methane (CH4) and other hydrocarbon 
gases. This study aimed to investigate the absorption 
of greenhouse gases from isoprene production by the 
marine microalgae Isochrysis galbana and Tetraselmis 
suecica, as well as the freshwater microalgae Chlorella 
vulgaris.The study was conducted in 2023 at the Ufa 
State Petroleum Technical University in Ufa, Republic 
of Bashkortostan, Russia.

MATERIALS AND METHODS
According to the literature (Cho et al., 2020; Deamici 

et al., 2019; Duarte et al., 2016), decarbonizing 
blow-off gases and exhaust gases of oil refineries 
using microalgae strains in laboratory conditions is 
typically based on creating a gas model and selecting 
a narrow range of carbon dioxide concentration in an 
inert solvent medium. In turn, in actual production 
conditions, the contents of CO2 and hydrocarbon 
gases in the discharged gases change, affecting the 
microalgae absorption properties. Isochrysis galbana, 
Tetraselmis suecica, and Chlorella vulgaris are widely 

used as experimental subjects, having passed the 
stages of pilot testing and being applied in practice. 
Thus, these species were chosen to investigate their 
CO2 absorption capacity in blow-off gases that contain 
the components of methane series ranging from C1 to 
C5. Isochrysis galbana is a marine microalga used in 
the aquaculture industry (Coutinho et al., 2006). This 
microalga is characterized by high division rates and 
lipid accumulation, leading to high lipid productivity 
and a significant increase in valuable chemicals such 
as omega-3 fatty acids. In addition, Bhatti et al. (2002) 
reported that Isochrysis galbana assimilates carbon 
by the active transfer of CO2 and bicarbonate ions 
(HCO3

–) through expressing a coenzyme carbonic 
anhydrase. Tetraselmis suecica is a marine green alga 
belonging to the prasinophytes and is widely used in 
hatcheries as food for bivalves, shrimp larvae, and 
rotifers (Muller-Feuga, 2004). It is also produced on 
an industrial scale for sale in the aquaculture market 
(Tredici et al., 2009). These marine microalgae 
present a wide range of antimicrobial properties 
(Austin et al., 1990; Austin et al., 1992) and have high 
potential as probiotics for fish (Irianto et al., 2002). 
Due to the high content of vitamin E, Tetraselmis 
suecica is also used as a source of this vitamin for 
humans and animals (Carballo-Cárdenas et al., 2003). 
Chlorella vulgaris with well-studied morphological 
and physiological characteristics is widely used as an 
experimental subject (Bajguz et al., 2009). Chlorella 
vulgaris is a cosmopolitan species that inhabits both 
terrestrial and aquatic environments: freshwater 
and saltwater. Chlorella vulgaris can obtain energy 
to develop through photosynthesis (autotrophic 
method) and respiration process (heterotrophic 
method). In addition, Chlorella vulgaris can combine 
the two methods (mixotrophic method) (Masojídek 
et al., 2014). This strain has been extensively studied, 
used in several industrial experiments, and found to 
be a fast-growing strain with the ability to capture 
CO2 from blow-off gases (Van Den Hende, 2012). It 
is rich in proteins (51%–58%), carbohydrates (12–
17%) and lipids (14–22%) (Cheah et al., 2015). To 
study the ability of microalgae to absorb emission 
gas components free of harmful sulfur oxides 
and nitrogen oxides, the gases formed during 
the dehydrogenation of isopentane into isoprene 
were selected. The content of sulfur and nitrogen 
compounds was strictly regulated, ensuring their 
absence in the exhaust gas. The exhaust gases from 
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isoprene production were fed into a cooling system 
to reach a temperature of 45–55 °C to purify it from 
catalytic dust. The gases were then fed into a burner 
for combustion. Currently, the gases discharged 
in this way are released into the atmosphere. The 
experimental gas was selected before the burner. The 
gas was extracted into a rubber cylinder and delivered 
to the laboratory. The appearance of methane in 
blow-off gases during intermediate selections from 
the tap position 5. Fig. 1 shows the adaptation of 
microorganisms to the nutrient medium and the 
formation of microalgae methane-forming bacterial 
symbiotes. Marine microalgae strains were provided 
by the Department of Materials Science and 
Corrosion Protection, Ufa State Petroleum Technical 
University, Russia. Cells were cultured in silicate-
free mineralized-33 g/L (Guillard, 1975) enriched 
artificial seawater. In each experiment conducted 
as part of this study, microalgae underwent two 
successive growth stages: a preparation stage and a 
cultivation stage. In the preparation stage, cells were 
periodically multiplied in 500-mL Erlenmeyer flasks 
containing 250 mL of solution and then transferred 
to 3-L Erlenmeyer flasks containing 1.75 L of solution. 
Cultivation flasks were maintained at 25°C, a 
photoperiod of 12:12 hours (h), and a light intensity of 
70 squre meter per second (m2/s) under fluorescent 
lamps. The 500-mL Erlenmeyer flasks underwent the 
process of barbotage by blowing filtered air through 
an aquarium compressor at an airflow rate of 800 
cm3/min. These algal cultures were used as starter 
cultures in the late exponential growth phase of the 
cultivation stage in a laboratory photobioreactor. The 
scheme of the photobioreactor is shown in Fig. 1.

Method of the gas composition analysis - In 

the exhaust gas, the volume fractions of non-
hydrocarbon gases, such as H2, nitrogen (N2), oxygen 
(O2) carbon monoxide (CO), CO2, and methane, were 
determined through absolute calibration using the 
LHM-8MD gas chromatograph with a flame ionization 
detector. The gas chromatograph is equipped with a 
chromatograph control unit and a chromatograph 
information processing unit. The chromatographic 
column was 2-m long and 3–4 mm internal diameter. 
Molecular sieve zeolite NaX (fraction 0.25–0.5 mm) 
was calcined at T = 300°C. The mass fractions of C2–
C5 hydrocarbons were measured in the same gas 
chromatograph equipped with a thermal conductivity 
detector, a chromatographic column of 6-m length, 
and 3–4 mm internal diameter. The liquid phase was 
triethylene glycol dibutylate, and diatomite was used 
as the solid carrier. The method for the continuous 
cultivation mode on gas absorption experiments was 
based on existing production methods. Gas bubbling 
was performed sequentially through a cascade 
of 4 flasks passing through a layer of microalgae 
suspension. To obtain isoprene dehydrogenation 
of isopentane, the experiments were conducted 
using waste gas from petrochemical production. The 
bioreactor consisted of seven 3-L Erlenmeyer flasks 
with the gas supply tube down, to each flask was 
added 10–14 mL microalgae suspension, and the 
height of the liquid column was 10 cm. The tests were 
conducted during the daytime. Cylinders were placed 
at the inlet of the first four flasks and the outlet of the 
last four flasks (Fig. 1). Gas from storage tank 1 was 
pumped by peristaltic pump 2 at a flow rate of 200 
mL/min. After the gas was completely pumped from 
cylinders 1 to 6 (1 run), they were rearranged, and 
bubbling continued. Gas sampling for component 

 

 
 

 
 

Fig. 1: Schematic of the bioreactor: 1- Cylinder with discharged gases, 2- Intake valve, 3- Peristaltic pump, 4- three-
liter Erlenmeyer flasks containing microalgae, 5- Sampling outlet, 6- Intake cylinder. 

 

Fig. 1: Schematic of the bioreactor: 1- Cylinder with discharged gases, 2- Intake valve, 3- Peristaltic pump, 4- three-liter Erlenmeyer flasks 
containing microalgae, 5- Sampling outlet, 6- Intake cylinder.
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composition analysis was performed from cylinders 
1 to 6 (Fig. 1).

RESULTS AND DISCUSSION
The CO2 absorption efficiency for both microalgae 

species was 95.0% (Table 1). The marine microalgae 
Tetraselmis suecica and Isochrysis galbana showed 
the greatest affinity for hydrocarbons of the C1–C5 
methane series. Moreover, the residual concentration 
of the gases at the outlet of the photobioreactor 
decreased completely as the number of carbon atoms 
in the chain increased. Assuming that the C1–C5 gases 
are components of the nutrient medium of the algal 
strains under study, the practical implementation of 
CO2 absorption in production excludes the operation 
of flaring of these gases and further reduces CO2 and 
water vapor emissions into the atmosphere. After 1 
day, the total nitrogen and oxygen concentrations in 
the gas volume of the receiving chamber increased 
significantly from 42.51–48.13 weight percent (wt.%) 
to 97.65–98.57 wt.%. To simultaneously study the 
CO2 absorption efficiency of the two algal strains, 
additional blow-offs were selected, hence the 
composition of the source gas was slightly different. 
The CO2 absorption capacity of the microalgae 
mixture was 91.3%. A similar dependence was 
obtained for the absorption of hydrocarbons of the 
C1–C5 methane series by the mixture of algal strains. 
After 1 day, the gas volume in the receiving chamber 
showed a significant increase of 97.04 wt.% in the 
total percentage of nitrogen and oxygen. These 
results indicate that the use of strains of marine 
microalgae Tetraselmis suecica and Isochrysis galbana 
is a promising method for capturing CO2 and C1–C5 
methane series hydrocarbons in the blow-off gases of 
petrochemical and oil refinery plants.

Hydrogen is the lightest and most volatile gas. 
Numerous studies (Machinery et. al. 2023) prove the 
release of biogenic hydrogen by algae, rather than its 
absorption. In our experiments, hydrogen diffused 
through a balloon. Studies on CO2 absorption by the 
freshwater alga Chlorella vulgaris were conducted 
one month later using blow-off gases from the same 
technological installation, so the composition of the 
gas was different from the study period of marine 
microalgae (Table 2). The microalgae Chlorella 
vulgaris demonstrated significant absorption of C1–
C5 methane series hydrocarbons. The microalgae 
Chlorella vulgaris demonstrated the ability to absorb 
CO2 with an efficiency of 88.48%. After 1 day, a 
significant increase in the percentage of nitrogen and 
oxygen was observed, from a total of 16.50 to 92.74 
wt.% by gas volume. Studies on changes in the genome, 
abundance, and other biological characteristics of 
the microalgae were not conducted due to the short 
duration of the experiment (24 h). Since microalgae 
cannot go through growth stages in such a short 
period of time, and the measured components 
show only slight changes, the composition of the 
aqueous medium in the initial and post-experimental 
conditions of the study with Chlorella vulgaris is 
presented for reference (Table 3). Studies conducted 
on CO2 absorption for actual gases in the industrial 
production of isoprene did not correlate with the 
efficiency of the absorption capacity of all microalgae 
strains used when the gas components changed 
due to compositional differences. However, the 
data obtained provide general information on the 
feasibility of the CO2 absorption method in the 
presence of C1–C5 methane series hydrocarbons. 
Therefore, it is possible to increase the efficiency of 
CO2 and C1–C5 absorption by selecting the wavelength 

Table 2: Changes in the composition of the blow-off gas after repeated passes through the photobioreactor 
 
 

Components Initial After 3 runs After 5 runs After 7 runs After 24 h
wt.%

H2 42.59 49.84 43.93 44.91 2.74 
O2 6.89 4.80 4.40 5.49 9.61
N2 9.61 12.58 18.04 23.01 83.13 
СO 2.35 3.58 2.71 2.57 0 
CO2 7.64 3.88 4.26 2.97 0.88 
CH4 13.89 16.43 18.31 16.63 0 
Ethane 4.29 2.23 2.29 1.79 1.92 
Derivatives of propane 8.02 4.38 4.03 1.95 0.85 
Derivatives of butane 4.04 1.99 1.78 0.58 0.11 
Derivatives of pentane 0.64 0.29 0.26 0.09 0 

 
  

Table 2: Changes in the composition of the blow-off gas after repeated passes through the photobioreactor



739

Global J. Environ. Sci. Manage., 10(2): 733-742, Spring 2024

of illumination, the temperature of the microalgae 
suspension, the bubbling rate, and the size of the gas 
bubbles.

CONCLUSIONS
Absorption of gases discharged from isoprene 

production by microalgae was studied for the 
first time. During isoprene synthesis by two-stage 
dehydrogenation of isopentane, waste gases such 
as light hydrocarbons C1–C5 and inert gases CO, CO2, 
and N2 were formed. Since the gas mixture was 
not utilized, the gases were sent to the furnace for 
combustion according to the technological scheme. 
Then, the combustion products of the waste gas and 
furnace gas were released into the atmosphere. Expert 
assessments on the calculation of CO2 emissions 
from isoprene production are not presented in 
the literature. According to estimates, the carbon 
dioxide emissions are equivalent to 10,000 to 15,000 
tons per year. Microalgae cultivation technology 
is recognized as the most effective and natural 
technology for utilizing carbon dioxide emissions to 
harness greenhouse gases. In this research, Isochrysis 
galbana, Tetraselmis suecica, and Chlorella vulgaris 
were selected to study the absorption capacity of CO2 
and hydrocarbon gases in the isoprene production 
discharged gases. Studies have shown that Chlorella 
vulgaris absorbs CO2 and methane most effectively, 
reducing carbon dioxide content from 7.64 to 0.82 
wt.% and methane content from 13.89 to 0 wt.%. All 
microalgae completely utilize carbon monoxide. C1–
C5 hydrocarbon gases are absorbed most effectively 
by mixed strains of Tetraselmis suecica and Isochrysis 
galbana. Comparative studies on biological fixation of 
discharged gases indicate that the marine microalgae 
strains Tetraselmis suecica and Isochrysis galbana and 
their mixtures, as well as the freshwater microalgae 
strain Chlorella vulgaris, have the potential to serve as 
reliable and stable CO2 biofixation mechanisms in the 

purification of discharged gases. The development 
of disposal technologies for discharged gases can 
eliminate the need for a combustion stage, reduce 
CO2 and combustion heat emissions by a factor of 10, 
reduce anthropogenic impacts on the environment, 
and slow down the pace of global warming.
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Table 3: Changes in the composition of the aqueous (nutrient) medium with Chlorella vulgaris 

 
 

Defined indicator Initial media After blow-off gases (after 24 
h) After smoke gases (after 24 h) 

Potential of hydrogen (рН) 4.95 5.81 5.32 
Nitrite ion: NO2

− :millgram per gram (mg/L) 11.86 9.32 11.35 
Nitrate ion: NO3

− (mg/L) 1095.60 1224.9 1156.85 
Ammonium ion: NH4

+ (mg/L) 8.51 77.22 14.14 
Phosphate ion PO4

3− (mg/L) 98.0 101.0 97.0 
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ABBREVIATIONS
% Percent
OC Degree Celsius

µl microliter

C1–C5 methane – pentane 

C2–C5 Ethane – pentane

CH4 Methane

cm3 Cubic centimetre

cm3/min Cubic centimeter per minute

CO Carbon monoxide

CO2 carbon dioxide

H2 hydrogen

HCO3
– Hydro carbonate ion

h Hour

g/L Grams per liter

kg Kilogram

kg CO2/1 kg Kilogram carbon dioxide per 
kilogram microalgae

micromole 
photons/(m2s)

Micromole of photons per 
square meter per second

mg/L Milligrams per liter

mL Milliliter

mL/min Milliliter per minute

mm Millimeter

m2/s Square meter per second

N2 Nitrogen

NO2
– Nitrite ion

NO3
– Nitrate ion

NH4
+ Ammonium ion

O2 Oxygen

рН Potential of hydrogen 

PO4
3– Phosphate ion

ppm Part per million

t/ha/y Tons per hectare per year

wt.% Weight percent
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