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BACKGROUND AND OBJECTIVES: The palm industry generates several waste products. Some of this waste, 
such as palm kernel meal, has not been fully optimized for processing. Therefore, this study sought to 
determine whether fermented palm kernel meal with various types of sugar (fructose, glucose, maltose, 
and sucrose) added could be utilized as a substrate for black soldier fly larvae.
METHODS: This study investigated the use of fermented palm kernel meal with various types of sugar 
added at a proportion of five per cent as a substrate for black soldier fly larvae. Fermented palm kernel 
meal without added sugar was used as a control substrate. Seven-day-old larvae were fed fermented palm 
kernel meal as an experimental substrate for 22 days and harvested on the final day, when their weight and 
length were measured and they were processed into meal and oil to evaluate their nutritional composition.  
FINDINGS: The addition of sugars to fermented palm kernel meal made no significant difference to the final 
weight or crude fat value of the larvae, but improved crude protein. The addition of glucose significantly 
increased the length of the larvae and increased their lauric acid value. However, glucose-added fermented 
palm kernel meal significantly reduced the relative percentage of total unsaturated fatty acids and the 
quantities of linolelaidic, -linolenic, and nervonic acid compared to the larvae fed on substrates with 
other added sugars. Meanwhile, fructose-added substrate resulted in significantly higher crude protein 
and moisture values, but significantly lower ash and carbohydrate values than those of other groups. 
Sucrose-added substrate resulted in a considerable improvement in ash content; magnesium; the relative 
percentage of total unsaturated fatty acids; arachidic, erucic, and docosadienoic acid; phosphorus; sodium; 
and iron values in the larvae. The larvae grown in the substrate with added maltose had a significantly 
higher accumulation of phosphorus, sodium, and iron, but showed significantly lower palmitoleic acid than 
other larvae groups. Calcium and potassium were accumulated better in the larvae grown on fermented 
palm kernel meal with added either glucose, maltose, or sucrose than other substrates.
CONCLUSION: of the various waste products generated by the palm industry, some, including palm 
kernel meal, have not yet been entirely processed. This study’s findings offer insights into managing the 
fermented palm kernel meal, which can be converted into valuable biomass with black soldier fly larvae, 
making the waste more sustainable and rich in nutrients. The addition of various sugars to fermented 
palm kernel meal improved the growth and nutritional value of the black soldier fly larvae. These results 
may help in building a process for the effective treatment of palm kernel meal for black soldier fly larvae 
production, which could further develop the feed industry and manage palm industry waste effectively by 
generating high protein meal as a step in creating a circular bioeconomy. 
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INTRODUCTION
Globally, the rate of organic waste production 

is increasing rapidly (Mohadesi et al., 2023). Over 
600 million tons of organic waste were generated 
annually in the early years of this century, and that 
number is projected to approach one billion tons 
by 2025 (Angulo-Mosquera et al., 2021; Cudjoe et 
al., 2021; Liu et al., 2018; Widyarsana et al., 2021). 
Organic waste, such as palm kernel meal (PKM), 
a byproduct of oil extraction from palm fruits, 
significantly contributes to Indonesia’s agricultural 
waste stream (Hambali and Rivai, 2017). The oil 
palm, Elaeis guineensis, is extensively grown in 
Indonesia, where it was originally introduced in 1911. 
According to statistics obtained from the Directorate 
General of Estate Crops, Ministry of Agriculture of 
the Republic of Indonesia, oil palm plantations in 
1970 were exclusively managed by state-owned and 
commercial businesses. However, in 1979, small-
scale farm plantations were also in operation. The 
total area of oil palm plantations increased from 
133,298 in 1970 to 11.3 million in 2015. Indonesia’s 
oil palm plantations are widely scattered over 22 
provinces, spanning the country from west to east, as 
the country’s favourable climatic and soil conditions 
permit. In 2015, Indonesia generated 37.5 million 
metric tonnes (MMt) of palm oil, including 31.3 MMt 
of crude palm oil and 6.2 MMt of palm kernel oil, from 
an oil palm plantation area of 11.3 MMt (Dahniar 
and Rusniati, 2019; Effendi et al., 2022; Sharma et 
al., 2005). The oil palm plantations in Indonesia 
are concentrated in the provinces of Sumatra and 
Kalimantan. These provinces collectively own the 
biggest oil palm acreage in the country (Austin et 
al., 2017; Dharmawan et al., 2020). Production 
projections for 2030 indicated that 54 metric tonnes 
(Mt) of empty fruit bunches, 31 Mt of mesocarp fruit 
fibres, 15 Mt of palm kernel shells, 130 Mt of palm 
oil mill effluent, 115 Mt of oil palm fronds, and 59.7 
Mt of oil palm trunks will be produced (Hambali and 
Rivai, 2017). As the activity of the palm oil industry 
rapidly increases, its organic waste, including palm 
oil mill effluent, palm oil decanter, and palm kernel 
meal, may result in environmental harm. Therefore, 
organic waste should be handled using biological 
methods that are environmentally friendly (Samimi, 
2024). Past studies have revealed that one alternative 
approach to managing industrial organic waste 
through biological methods involves using insects to 

convert organic waste into valuable nutrient biomass. 
The preferred insect is the black soldier fly (Hermetia 
illucens Linnaeus (L.); Diptera: Stratiomyidae), 
whose larvae (BSFL) can convert industrial organic 
waste into biomass for animal feed. BSFL have been 
known for their utility in converting various forms of 
biological material waste into insect biomass (Kumar 
et al., 2021; Liu et al., 2022; Siddiqui et al., 2022). 
BSFL have a high capacity to bioconvert organic waste 
while releasing low amounts of greenhouse gases 
(Liu et al., 2021; Luperdi et al., 2023; Pang et al., 
2020), marking their potential as a future alternative 
animal feed source (English et al., 2021; Higa et al., 
2021; Nugroho and Nur, 2018; Wang and Shelomi, 
2017). Additionally, rearing BSFL is considered a 
sustainable method to convert several types of 
waste biogenically (Nugroho et al., 2023; Santoso 
et al., 2023). BSFL have a high protein content of 
about 559.9 grams per kilogram (g/kg), crude lipids 
of about 18.6 g/kg, and a favourable amino acid 
balance (Al-Qazzaz et al., 2016). To raise BSFL, a high-
nutrient, low-cost substrate is needed, such as PKM, 
although this lacks adequate nutrition. Inexpensive 
substrates that are rich in nutrients are used to boost 
BSFL development. Alternative methods, such as 
fermentation, may help to degrade cellulose wastes 
into usable ingredients for BSFL cultivation. The BSFL 
may be collected as they reach maturity and utilized 
as a source of protein and lipids. Insect meal made 
from larvae may be fed to livestock, and the larvae’s 
lipid supply can also be transesterified into biodiesel 
to contribute to meeting the world’s energy needs 
(Raksasat et al., 2020). Many different substrates and 
methods have been tried to raise BSFL to achieve the 
optimum nutrient, protein, and fat values (Fitriana et 
al., 2022; Lalander et al., 2020; Shumo et al., 2019). 
Previous research has shown that the nutritional 
content of palm industry waste might be enriched by 
fermentation, leading to better BSFL growth. At the 
best inoculum proportion of 0.5 millilitres (mL) per 
10 grams (g) dry weight of palm industry waste, BSFL 
were 34 percent (%) heavier than the control and had 
high lipid content (24.7%) and protein value (24.7%) 
(Liew et al., 2022). The average individual weight 
of BSFL on fermented waste was 0.0619±0.004 g, 
which was substantially higher than the average 
individual weight of BSFL raised on a combination 
of duck dung and rice straw (0.0614±0.001 g), 
suggesting that BSFL might be employed as high-
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efficiency transformation agents in the conversion of 
organic duck manure to stable compost (Pamintuan 
et al., 2020). In addition, BSFL grown on expired milk 
substrate had a high probability of survival (96.5%) 
(Purba et al., 2021). BSFL that were reared on PKM 
waste with added fish pellets and fructose exhibited 
optimum fatty acid composition without reduced 
growth or survival (Nugroho et al., 2023). Although 
several studies have been conducted to ascertain 
the growth and nutrition value of BSFL on different 
substrates, the differences in growth and nutrient 
profiles of BSFL that were grown on fermented PKM 
(fPKM) combined with varying types of sugars have 
not been assessed. In this study, BSFL’s efficiency in 
transforming locally produced fPKM with various 
added sugars into insect biomass was measured 
on a laboratory scale. These results may contribute 
to better knowledge of BSFL growth, nutrient 
composition, and lipid or fatty acid metabolism, 
illuminating the utility of insect cultivation with PKM 
waste and added sugar (fructose, glucose, maltose, 
and sucrose) for fat supply. This study predicted 
that the addition of various sugars would improve 
the growth and nutritional value of the BSFL and, in 
particular, that fructose and glucose would enhance 
the measured parameters better than other sugars. 
These findings were intended to contribute to BSFL 
rearing as related to the feed industry. This study was 
conducted in the Animal Physiology Development 
and Molecular Laboratory, Faculty of Mathematics 
and Natural Sciences, Mulawarman University, 
Samarinda, East Kalimantan, Indonesia, in 2023.

MATERIALS AND METHODS
Chemicals and BSFL source

The chemical substances (analysis grade) were 
bought from Merck KGaA (Darmstadt, Germany) 
and Sigma-Aldrich (Sigma Aldrich Incorporation, 
United State of America). Black soldier fly eggs were 
provided by a local farmer of BSFL, Ahasa, Samarinda, 
Limited (Ltd), East Kalimantan, Indonesia). After 4 
days, the BSF eggs became young larvae. The young 
larvae were raised in a plastic growing chamber at 
about 28 degrees Celsius (°C) and a relative humidity 
of 60–70% until day 7. Broiler chicken pellets were 
used as the feeding medium during this stage.

Diet setup and trials
The PKM was obtained from Manunggal, Ltd., 

which is located in Kalimantan Timur, Indonesia. The 
PKM was fermented with effective microorganisms 4 
(EM4) and the resulting feed was used as the control 
diet (fPKM). The fermentation process was performed 
by mixing 180 g of molasses, 279 mL of EM4, and 
2.5 L of water with 2.5 kg of PKM. This mixture was 
placed in a plastic bag that was tied tightly closed. 
The mixture was allowed to stand for 4 days at room 
temperature to allow the fermentation process 
to proceed. This fermentation process may have 
decreased the fibre content of the PKM, as indicated 
by the reduction of the carbohydrate content from 
60.11% to 38.69%, making the fPKM more digestible 
for the BSFL. The data about unfermented PKM were 
obtained from a previous study (Nugroho et al., 
2023), while the fermented PKM data were derived 
from this experiment (Table 1). The treatment diets 
were formulated with fPKM to which various sugars 
(fructose (fPKMfru), glucose (fPKMglu), maltose 
(fPKMmal), and sucrose (fPKMsuc)) were added. 
Each sugar was added to the fPKM at a proportion 
of 5%. Based on previous studies, a 5% fructose 
proportion was the optimum level of added sugar 
for optimum BSFL growth and nutrient profile 
(Nugroho et al., 2023). Approximately 3,000 7-day-
old BSFL were randomly split into five groups of three 
plastic chambers measuring 24x15x6 centimetres 
(cm) (length x width x height), each containing 200 
larvae. Five different feeding experiments were run 
in triplicate in these containers. Water was added to 
each of the substrates to obtain the desired humidity 
level of 60–70%. In the BSFL rearing chamber room, 
the temperature was kept at about 28°C. During the 
experiment, an amount of substrate was given and 
adjusted to the BSFL in each chamber as described 
in a prior study with modifications (Hoc et al., 2020). 
On days 10–22, the BSFL were given 1 kilogram (kg) 
of adjusted substrate. This continued until 90% of 
the larvae became prepupa, which occurred at about 
day 22. The growth and survival of the BSFL were 
assessed on the final day of the experiment. The 
initial proximate analysis and mineral values of each 
substrate are shown in Tables 1 and 2.

BSFL growth 
The body weight (g) and length (cm) of 30 BSFL that 

were randomly selected from each chamber were 
measured on the final day of the study using a digital 
microscale (Sartorius, Beijing, China) and digital 



506

Palm kernel waste with sugar as larvae substrate  

callipers (Tools, Ltd., Shanghai, China). 

Proximate analysis
On the final day of the study, all of the BSFL in 

each group were milled after they were freeze-dried 
for 72 hours. To evaluate the dry matter content of 
pre-dried samples, they were dried at 103°C for 
16 hours. Subsequently, a three-hour incineration 
process was conducted at a temperature of 550°C 
to ascertain the ash composition of each group. The 
Kjeldahl technique was employed to determine the 
total nitrogen content (Marco et al., 2021; Scheiner, 
1976). The crude fat value was measured using the 
hydrolysis method in HCl and subsequent extraction 
in light petroleum.

Mineral profiling
The concentrations of minerals, including P, Ca, 

K, Mg, Na, and Fe, were quantified from the BSFL 
substrate and the BSFL after they were reared for 22 
days on fPKM with various types of sugar added. The 
samples were ashed at a temperature of 500°C for 5 
hours to achieve a steady weight. A muffle furnace 
(BF-02/15, SM Indo, Banten, Indonesia) was used 
for this procedure. After ashing, the samples were 
allowed to cool to ambient temperature. Then, a 
volume of 5 mL of a 1 molar (M) solution of nitric 
acid (HNO3) was introduced. The resulting solution 
was subjected to filtration and transferred into a 
volumetric flask with a capacity of 100 mL that had 

been filled to its maximum capacity with a solution 
of 1M HNO3. The mineral value was quantified with 
an atomic absorption spectrophotometer (Model 
AA6300, Shimadzu, Japan).

Fatty acid profiling
The frozen samples of BSFL were subjected to 

freeze-drying until a consistent weight was achieved. 
This was followed by lipid extraction with the 
direct methylation procedure (Ramos-Bueno et 
al., 2016). The fatty acid value of the samples was 
evaluated by subjecting them to methylation with 
14% of boron trifluoride (BF3) to produce fatty acid 
methyl esters (FAME). Gas-liquid chromatography 
was performed with an Agilent 7890A instrument 
equipped with a DB-23 column at 30 metres (m) in 
length, 0.25 millimetres (mm) in diameter, and 0.20m 
of film thickness. The chromatographic analysis 
was conducted under the specified conditions. The 
term ‘injection’ refers to the process of introducing 
a substance, typically a liquid. The experimental 
setup consisted of a system with a volume of 1 litre 
(L). The inlet heater was set at 260°C, and the split 
ratio was maintained at 35:1. The detector heater 
was operated at 280°C. The hydrogen and airflow 
rates were set at 40 millilitres per minute (mL/min) 
and 400 mL/min, respectively. A purge flow of 25 
mL/min was used. The gas used in the experiment 
was of 99.999 per cent purity. Atmospheric pressure 
was measured at 0.4 megapascals (MPa), while the 

Table 1: Proximate analysis of initial substrates for BSFL rearing 
 
 

Proximate analysis (%, as-is 
basis) fPKM fPKMfru fPKMglu fPKMmal fPKMsuc 

Crude protein 11.65 9.25 9.26 9 9.6 
Crude fat 4.6 6.69 2.35 2.69 2.44 
Ash 3.57 2.95 2.8 2.72 2.83 
Moisture 41.49 47.37 48.02 45.84 46.41 
Carbohydrate 38.69 33.74 37.57 39.75 38.72
fPKM = Fermented Palm Kernel Meal; fru = fructose; glu = glucose; mal = maltose; suc = sucrose. Various types of sugars were added  at level 5% into 
fPKM. 
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Table 2: Mineral value of initial substrates for BSFL rearing

 
Table 2: Mineral value of initial substrates for BSFL rearing 

 
 

Mineral (%, as-is basis) fPKM fPKMfru fPKMglu fPKMmal fPKMsuc 
Phosphorous (P)  0.39 0.4 0.41 0.4 0.4 
Calcium (Ca) 0.48 0.48 0.47 0.47 0.47 
Potassium (K) 0.75 0.75 0.75 0.74 0.75 
Magnesium (Mg) 0.04 0.04 0.04 0.04 0.04 
Sodium (Na) 0.17 0.18 0.18 0.16 0.15
Iron (Fe) 57.5 57 57 57.5 57 
fPKM = Fermented Palm Kernel Meal; fru = fructose; glu = glucose; mal = maltose; suc = sucrose. Various types of sugars were added  at level 5% into 
fPKM. 
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nitrogen (N2) pressure ranged from 0.5 to 0.8 MPa, 
and the hydrogen (H2) pressure ranged from 0.3 to 
0.4 MPa. The fatty acid composition was determined 
by calculating the fraction of identified fatty acids. 

Statistical analysis
All quantitative data obtained are represented as 

average ± standard error mean (SEM). A one-way 
analysis of variance (ANOVA, performed with SPSS 
software, USA) was applied to evaluate statistical 
differences and Duncan’s multiple-range post-hoc 
test (DMRT) at a significance of p<0.05 (Samimi 
and Nouri, 2023) was used to assess differences 
in significance among the experimental groups. 
Microsoft Excel 2022 (Microsoft Inc., USA) was used 
to depict graphical data.

RESULTS AND DISCUSSION
In recent decades, numerous industries have 

produced large amounts of waste due to human 
activity and rapid population expansion. According to 
past studies, 3.4 billion metric tonnes of solid trash 
are expected to be produced globally by 2050. To 
address trash disposal, authorities must immediately 
create low-cost, effective technologies that are 
environmentally friendly (Samimi and Shahriari-
Moghadam, 2023). However, thus far, only 20% of 
waste is recycled, while the rest is landfilled. Waste 
presents a serious hazard to people, animals, and the 
environment when it is simply dumped in open-air 
landfills in poor nations (Ashokkumar et al., 2022). 
One of the waste products that can potentially affect 
the environment is PKM from the palm oil industry. 
Previous studies have mentioned that palm kernel 

meal, both fermented and unfermented, has been 
studied for its effects on the growth performance of 
broiler chickens (Alshelmani et al., 2016). BSFL that 
are reared on bioorganic waste, such as PKM, exhibit 
high nutritional protein and oil content. Compared to 
other substrates, such as food waste (Fu et al., 2022) 
or manure (Awasthi et al., 2020), PKM is a much 
more promising substrate. PKM as a BSFL substrate 
has lower potential pathogenicity and bioplastic 
contamination. The BSFL reared on PKM also offer 
higher nutritional value than those raised on other 
substrates. This study evaluated the effects of fPKM 
substrate with various added sugars on BSFL growth 
and nutritional composition. The weight and length 
of the BSFL fed fPKM with added sugars for 22 days 
can be seen in Figs. 1 and 2. The addition of various 
sugars in fPKM had no significant effect on the final 
weight of the BSFL, while the addition of glucose to 
the fPKM resulted in a final BSFL length (1.64 cm) that 
was significantly (p<0.05) higher than the lengths of 
the BSFL fed on other media. 

The study of various sugar additions to insects’ 
diets has been limited. Nevertheless, dipteran 
larvae, such as BSFL, appear capable of sustaining 
growth even when provided with diets lacking or 
low in carbohydrates or sugar. This is attributed to 
the insects’ ability to derive the necessary energy 
for maintenance and weight increase from proteins 
(Brookes and Fraenkel, 1958). In this study, the 
various types of added sugar did not affect the 
final weight of the BSFL. This finding is supported 
by past studies that reported that the inclusion of 
monosaccharides, disaccharides, and starches did 
not have any significant effect on the growth indices  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 1: Mean±SE weight of BSFL fed fermented palm kernel meal (fPKM) with various types of sugars  
at level 5% (fru = fructose; glu = glucose; mal = maltose; suc = sucrose) for 22 days  
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Fig. 1: Mean±SE weight of BSFL fed fermented palm kernel meal (fPKM) with various types of sugars at level 5% (fru = fructose; glu = glu-
cose; mal = maltose; suc = sucrose) for 22 days
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of BSFL (Cohn et al., 2022). The addition of sugars, 
such as galactose or xylan, resulted in a decrease in 
crude lipid levels. This suggests that the presence of 
various types of sugar in the diet of BSFL does not 
induce growth but may affect their proximate and 
fatty acid values.

Proximate analysis
The BSFL reared on fPKM with added fructose 

showed significantly higher (p<0.05) crude protein 
and moisture values but had the significantly lowest 
(p<0.05) ash and carbohydrate values compared 
to BSFL in other groups. The addition of any type 
of sugar to the fPKM did not significantly affect the 
BSFL crude fat value compared to other sugar-added 
substrates but increased it compared to the BSFL 
reared on unaltered fPKM (Table 3). 

The use of the fPKM with various sugar additions 
resulted in the biosynthesis of a substantial amount 
of crude protein, between 49.35±0.48% and 

52.26±0.29%, in the BSFL meal. This study’s results 
suggest that fPKM with added fructose as a BSFL 
substrate that is fed for 22 days produces larvae with 
a significantly higher protein value than the other 
tested substrates. The crude protein level of the BSFL 
in this study exhibited similarities to the defatted 
BSFL meal from BSFL cultivated on food waste, which 
may contain various sugars (Ebeneezar et al., 2021). 
Similar findings were reported in a previous study, 
which found that the addition of fructose to PKM 
resulted in high protein values in the BSFL (Nugroho 
et al., 2023). This high protein content was notably 
greater than the protein content seen in BSFL 
produced using industrial agriculture waste products 
(39–48%) (Zulkifli et al., 2022), as well as those reared 
on rice straw (34.62%) (Pamintuan et al., 2020). BSFL 
are often reared on a substrate of organic waste to 
achieve a substantial protein yield (Kishawy et al., 
2022). The considerable protein content found in 
BSFL makes them a viable alternative to fish meal. 
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Fig. 2: Mean±SE length (cm) of BSFL after 22 days grown in fermented palm kernel meal (fPKM) with various types 
of sugars (fru = fructose; glu = glucose; mal = maltose; suc = sucrose). Various types of sugars were added at level 

5% into fPKM. Significant differences (P<0.05) among the groups are exhibited by different letters (a, b) in each bar 
  

Fig. 2: Mean±SE length (cm) of BSFL after 22 days grown in fermented palm kernel meal (fPKM) with various types of sugars (fru = fructose; 
glu = glucose; mal = maltose; suc = sucrose). Various types of sugars were added at level 5% into fPKM. Significant differences (P<0.05) 

among the groups are exhibited by different letters (a, b) in each bar

Table 3: Proximate value of BSFL meal grown in fermented palm kernel meal (fPKM) added various sugar for 22 days 
 
 

Proximate analysis  
(%, as-is basis) fPKM fPKMfru fPKMglu fPKMmal fPKMsuc 

Crude protein (%) 50.660.39b 52.260.29c 49.900.33ab 49.350.48a 50.650.02ab 

Crude fat (%) 19.850.05a 20.750.06b 20.630.04b 20.640.02b 20.630.04b 

Carbohydrate (%) 16.500.36b 12.410.33a 15.980.28b 16.600.42b 16.120.20b 
Ash (%) 11.470.01a 11.650.06b 11.540.01a 11.730.03b 11.840.03c 

Moisture (%) 1.510.01a 2.920.04d 1.950.03c 1.690.04b 1.910.01c 

Data shown as average  SEM (standard error mean). Significant differences between groups (P < 0.05) is indicated by different superscripts following 
the average SEM in the same row. fPKM = Fermented Palm Kernel Meal; fru = fructose; glu = glucose; mal = maltose; suc = sucrose. Various types of 
carbohydrate were added (5%) into fPKM.  
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This substitution is particularly advantageous given 
fish meal’s higher cost, limited availability, and 
unsustainable nature. Recently, there has been a 
growing trend in the aquafeed business towards 
partially or completely substituting fish meal with 
other high-protein sources, such as BSFL meal 
(Mikołajczak et al., 2022; Opiyo et al., 2023; Zhao 
et al., 2023). The findings of this study affirm that 
growing BSFL on fPKM with or without added sugar 
may be a viable approach to implementing BSFL 
farming in the feed business. Notably, the addition 
of any type of sugar to the fPKM substrate for BSFL 
resulted in significantly higher amounts of crude 
fat content, from 20.63±0.04% to 20.75±0.06%, 
compared to BSFL reared on unaltered fPKM. One 
possible method by which sugars such as fructose, 
glucose, maltose, and sucrose may increase BSFL 
fat content is by influencing an insect gene for lipid 
metabolism that is related to lipid synthesis through 
a de novo pathway (Bergstrom, 2023; Biolchini et 
al., 2017; Thompson and Redak, 2000; Van Handel, 
1966). However, the inclusion of fructose in the 
fPKM reduced the carbohydrate content in the BSFL. 
When sucrose was added to the fPKM, a considerable 
improvement in ash content was seen. The highest 
moisture content (2.92±0.04%) was observed in BSFL 
that were reared on fPKM with added fructose. The 
BSFL grown on fPKM with added maltose or sucrose 
exhibited a significantly higher accumulation of 
phosphorus, sodium, and iron than those of other 
groups. Calcium and potassium were accumulated 
better in the BSFL reared on fPKM with added either 
glucose, maltose, or sucrose. However, magnesium 
was only significantly elevated in the BSFL reared on 
fPKM with added sucrose (Table 4).

BSFL can accumulate abundant mineral deposits 
from a wide range of substrates (Daş et al., 2023; 
Raksasat et al., 2020; Shumo et al., 2019). The 

addition of sugar to the BSFL substrate was shown 
to increase mineral accumulation from PKM, which 
contains minerals in quantities of 835–6,130 parts 
per million (ppm) (Alimon, 2004; Bárcena-Gama et 
al., 2022). Furthermore, the BSFL raised on substrates 
with different added sugars exhibited diverse mineral 
deposit patterns, indicating a high mineral turnover 
(Paul et al., 2023; Seyedalmoosavi et al., 2023). Some 
previous studies have stated that a high-fructose diet 
was associated with altered phosphorus metabolism 
in BSFL. There is also a correlation between fructose 
consumption and decreased blood phosphorus 
values (Mayes, 1993; Milne and Nielsen, 2000; Wong, 
2022). This study found nine fatty acids in the BSFL 
raised on fPKM with various types of sugar added 
(Table 5). This finding aligns with past studies, which 
reported that approximately nine fatty acids were 
detected in BSFL grown on PKM with added fructose 
(Nugroho et al., 2023). The lauric acid level in BSFL 
increased (22.60±0.34%) when the BSFL were raised 
on fPKM with added glucose. However, adding 
glucose to the fPKM results in significantly reduced 
values of linolelaidic (21.47±0.36%), a-linolenic 
(13.68±0.32%), and nervonic (1.21±0.00%) acids 
compared to other groups of BSFL raised on fPKM 
with other added sugars. The inclusion of sucrose 
in the fPKM significantly improved the values of 
arachidic (5.025±0.23%), erucic (5.45±0.22%), and 
docosadienoic (1.89±0.10%) acids. The significantly 
highest myristoleic acid value (5.50±0.05%) was 
found in the BSFL reared on fPKM with added 
maltose. However, the BSFL grown on fPKM with 
added maltose and sucrose showed significantly 
lower palmitoleic acid (25.44±0.39 and 25.41±0.30%, 
respectively) values than other groups of BSFL fed 
either unaltered fPKM or fPKM with added fructose 
or glucose.

The incorporation of sucrose in the fPKM for 
Table 4: Mineral value of defatted BSFL meal reared in fermented palm kernel meal (fPKM) and various types of carbohydrate addition for 22 

days (n = 3). 
 
 

Minerals (%, as-is basis) fPKM fPKMfru fPKMglu fPKMmal fPKMsuc 
Phosphorus (P)  3.730.03a 4.300.06b 4.700.00c 4.930.07d 5.000.06d 
Calcium (Ca) 1.270.03a 2.230.03b 3.470.03c 3.530.03c 3.530.03c 
Potassium (K) 3.730.07a 4.530.03b 5.300.06c 5.400.06c 5.270.09c 
Magnesium (Mg) 3.270.07a 4.470.03bc 4.500.06bc 4.670.03cd 4.630.03d 
Sodium (Na) 1.730.03a 2.130.03b 2.630.01c 2.500.00d 2.630.03d 
Iron (Fe) 1.000.06a 1.530.03b 2.470.03c 2.630.03d 2.630.03d 
Data shown as average  SEM (standard error mean). Significant differences between groups (P < 0.05) is indicated by different superscripts following 
the average SEM in the same row. fPKM = Fermented Palm   Kernel Meal; fru = fructose; glu = glucose; mal = maltose; suc = sucrose. Various types of 
carbohydrate were added (5%) into fPKM.  
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BSFL resulted in the significantly highest relative 
percentage of total unsaturated fatty acid (83.16%), 
but the lowest total saturated fatty acid (16.84%). 
Conversely, adding glucose to the fPKM for BSFL 
resulted in the significantly lowest relative percentage 
of total unsaturated fatty acid (64.36%) (Fig. 3).

 The lipid content of BSFL may be elevated as a 
result of sugar in their diets, as the experimental diets 
boosted the biosynthesis of specific saturated fatty 
acids, including capric acid (C10), lauric acid (C12), 
and myristic acid (C14) (Hoc et al., 2020). This study 
also revealed a notable proportion of certain fatty 
acids in the BSFL that were grown on fPKM. These 
fatty acids include lauric acid (C12:0), myristoleic 
acid (C14:1), palmitoleic acid (C16:1), linolelaidic 
acid (C18:2n6t), a-linolenic acid (C18:3n3), arachidic 
acid (C20:0), erucic acid (C22:ln9), docosadienoic 

acid (C22:2), and nervonic acid (C24:ln9). Previous 
studies reported that lauric acid (C12:0) was the 
predominant fatty acid in BSFL (Nugroho et al., 2023; 
Shumo et al., 2019), differentiating BSFL from other 
insect species, such as Acheta domesticus (Linnaeus) 
and Alphitobius diaperinus (Pfanzer) (Oonincx et al., 
2015). Furthermore, the bioconversion of a significant 
amount of carbohydrates into lauric acid is attributed 
to the activity of BSFL (Spranghers et al., 2017). This 
study demonstrated that the incorporation of glucose 
into the fPKM substrate resulted in an increase in 
the concentration of lauric acid in the BSFL. Glucose 
may be involved in fatty acid synthesis via a de novo 
biosynthesis pathway (Prager et al., 2019; Stanley‐
Samuelson et al., 1988). The researchers highlighted 
the possible role of certain enzymes in the metabolic 
processes to produce BSFL fatty acids. Certain fatty 

Table 5: Fatty acid value (%) of BSFL grown in fermented palm kernel meal (fPKM) with various types of sugars addition 
 
 

Fatty acids fPKM fPKMfru fPKMglu fPKMmal fPKMsuc
Lauric acid (C12:0) 17.020.25a 19.770.28b 22.600.34c 20.680.76b 19.180.541b 
Myristoleic acid (C14:1) 4.650.05b 3.830.19a 4.220.19a 5.500.05c 4.070.09a 
Palmitoleic acid (C16:1) 28.510.14b 28.180.33b 27.690.21b 25.440.39a 25.410.30a 
Linolelaidic acid (C18:2n6t) 23.340.05b 22.490.29ab 21.470.36a 23.520.29b 21.840.52a 
-Linolenic acid (C18:3n3) 14.840.33b 14.020.13ab 13.680.32a 13.980.57ab 14.850.07b 
Arachidic acid (C20:0) 3.080.05a 3.670.12ab 3.260.19a 4.140.33b 5.0250.23c 
Erucic acid (C22:ln9) 4.110.06a 4.200.02a 4.210.12a 3.740.22a 5.450.22b 
Docosadienoic acid (C22:2) 1.180.03a 1.250.04a 1.620.267a 1.300.17a 1.890.10b 
Nervonic acid (C24:ln9) 3.240.08d 2.550.18cd 1.210.00a 1.670.42ab 2.270.22bc 
Data shown as average  SEM (standard error mean). Significant differences between groups (P < 0.05) is indicated by different superscripts following 
the average SEM in the same row. fPKM = Fermented Palm Kernel Meal; fru = fructose; glu = glucose; mal = maltose; suc = sucrose. Various types of 
carbohydrate were added (5%) into fPKM.  
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various sugars for 22 days. fPKM = Fermented Palm Kernel Meal; fru = fructose; glu = glucose; mal = maltose; suc = 
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acids, namely decanoic, lauric, and myristic acid, were 
exclusively detected in deuterated states. Conversely, 
palmitic, palmitoleic, and oleic acids were observed 
in both deuterated and non-deuterated forms. This 
suggests that BSFL can partially synthesize these fatty 
acids through biosynthetic pathways, rather than 
solely accumulating them from their diet. Fatty acids 
play a crucial role in insects by facilitating the synthesis 
of pheromones for communication and protective 
compounds (Blomquist et al., 2012; Moriconi et al., 
2019; Pei et al., 2019). Furthermore, BSFL oil contains 
a significant concentration of lauric acid (C12:0), which 
resembles the composition of coconut oil (Li et al., 
2016; Ushakova et al., 2016). This study also provides 
evidence that BSFL can efficiently convert fPKM with 
or without added sugars into significant quantities 
of palmitoleic acid. Dipterans may be distinguished 
from the members of other insect orders by their 
elevated palmitoleic acid levels, which often exceed 
15% of their total fatty acid composition (Aguilar, 
2021). The presence of palmitoleic acid is prevalent in 
the lipid composition of the larvae of five of the eight 
species belonging to the order Lepidoptera (Thomas 
and Kiin-Kabari, 2022). Linolelaidic acid (C18: 2n6t), 
which is classified as an omega-6 trans fatty acid, was 
present in significant quantities in the BSFL that were 
grown on fPKM with added glucose. Past research has 
reported the occurrence of omega-6 trans fatty acids 
in black soldier fly prepupae (Giannetto et al., 2020). 
The analysis of fatty acids revealed the occurrence of 
arachidic acid, erucic acid, and docosadienoic acid in 
the BSFL grown on fPKM with added sucrose. This 
finding is similar to those of previous studies revealing 
that rearing BSFL on sugar-beet pulp, bakery waste, 
and fruit and vegetable waste, which may contain 
sucrose, significantly affects the levels of arachidic 
acid, erucic acid, and docosadienoic acid present in 
the BSFL (Fischer and Romano, 2021; Magee et al., 
2021; Shumo et al., 2019). Furthermore, the addition 
of maltose resulted in a notable increase in myristoleic 
acid, sometimes referred to as a mono-unsaturated 
fatty acid (MUFA). Therefore, the incorporation of 
maltose into BSFL substrate during industrial farming 
might provide advantageous outcomes in terms of 
MUFA production, particularly the production of 
myristoleic acid. The precise mechanisms by which 
various sugars affect BSFL’s fatty acid metabolism 
remain largely unexplored. Nevertheless, the 
variation in the fatty acid compositions of BSFL during 

the prepupal phase may influence the regulation of 
genes associated with lipid metabolism throughout 
larval growth (Giannetto et al., 2020). Moreover, 
there are several interconnected pathways linking 
various types of sugar, especially glucose, and lipid 
metabolism (Parhofer, 2015).

CONCLUSION
The worldwide rate of organic waste generation is 

undergoing significant, rapid growth. In the early part 
of this century, the annual amount of organic waste 
generated exceeded 600 million tons. According 
to projections, this quantity is expected to reach 
about one billion tons by 2025. Palm kernel meal, a 
byproduct of palm fruit oil extraction, is a significant 
component of Indonesia’s agricultural waste stream. 
Meanwhile, the oil palm plantation area continues 
to grow across 22 provinces in Indonesia, covering 
the nation from east to west. BSFL present an 
alternative approach to managing organic waste, 
such as by converting PKM into insect biomass that 
may then be included in animal feed. The addition 
of various sugars to fPKM is suggested for rearing 
BSFL to provide nutritional compounds, such as 
proteins, lipids and various fatty acids, as well as to 
support mineral accumulation in the BSFL biomass. 
Specifically, the use of fPKM with 5% fructose added 
to feed BSFL for 22 days improves the final protein 
content in the BSFL. The addition of sugars to fPKM 
did not significantly affect the final weight of the 
larvae or the crude fat value, but it did enhance 
the larvae’s crude protein content. The inclusion of 
glucose resulted in a substantial increase in larval 
length, as well as an increase in the concentration 
of lauric acid in the BSFL. However, the addition of 
glucose to the fPKM led to a notable decrease in 
the relative proportion of total unsaturated fatty 
acids, such as linolelaidic, α-linolenic, and nervonic 
acid. Conversely, the addition of fructose resulted in 
enhanced crude protein and moisture content, while 
resulting in BSFL that exhibited the lowest levels of 
ash and carbohydrates of the measured groups. The 
addition of sucrose to the fPKM resulted in significant 
increases in the BSFL’s ash content, magnesium levels, 
relative percentage of total unsaturated fatty acids, 
arachidic acid, erucic acid, and docosadienoic acid, 
as well as phosphorus, sodium, and iron values. The 
larvae grown on the fPKM supplemented with maltose 
showed improved accumulation of phosphorus, salt, 
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and iron. However, these larvae had a considerably 
lower value of palmitoleic acid compared to the 
larvae in other groups. Conversely, the larvae that 
were grown on fPKM supplemented with glucose, 
maltose, or sucrose exhibited a greater accumulation 
of calcium and potassium. These findings may be 
beneficial for feed manufacturers seeking alternatives 
to fish meal and fish oil. Furthermore, exploring 
alternative sources of animal feed has become 
crucial in recent years, and palm kernel waste has 
emerged as a promising feed alternative option. Palm 
kernel waste is rich in essential nutrients and is an 
economical and sustainable feed choice for livestock. 
Its high fibre content aids digestion, while its protein 
content contributes to animals’ growth and muscle 
development. Moreover, the use of palm kernel waste 
as animal feed reduces the environmental impacts 
associated with the oil processing industry’s waste 
disposal activity. However, certain precautions must 
be taken, such as proper treatment to remove any 
harmful substances from PKM before incorporating 
it into feed. Thus, with proper management and 
utilization, palm kernel waste presents a valuable 
resource for animal nutrition, supporting the overall 
objective of sustainable agriculture.
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