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BACKGROUND AND OBJECTIVES: Leachate recirculation has become a global practice for 
anaerobic digestion of municipal solid waste. Implementation of artificial neural networks for 
modeling and prediction of this process still remains challenging. Additionally, there has been 
a lack of research regarding the generalization capacity of neural networks using the data 
from other studies. This study aimed to enhance methane production rates and decrease 
biostabilization time in municipal solid waste treatment. It addressed the research gap in 
applying and generalizing neural networks to predict biogas production based on laboratory-
measured parameters. 
METHODS: Two distinct systems were utilized for leachate treatment. System 1 involved 
collecting the leachate delivered by a new municipal solid waste reactor and transferring it to 
a recirculation tank. System 2 consisted of passing the fresh municipal solid waste leachate 
through a degraded municipal solid waste and then returning the obtained liquid back to the 
waste reactor. The experimental data were employed to develop an artificial neural network 
to predict methane content and cumulative biogas production. The model was trained and 
optimized using the experimental data. The effectiveness and generalizability of the optimal 
neural network were evaluated by using it for the unseen data from other studies, ensuring 
its ability to make accurate predictions beyond the training dataset. 
FINDINGS: The results demonstrated that in System 1, ammonium and chemical oxygen 
demand concentrations in the leachate progressively increased to high levels. In System 2, 
the average removal efficiencies for chemical oxygen demand and ammonium were found 
to be 85 percent and 34 percent respectively. The methane yield in biogas reached 59 liters 
per kilogram of dry weight, with a corresponding methane fraction of 63 percent. The neural 
network model showed an excellent performance, with validation performances of 0.716 
and 0.634. The overall performance of the dataset resulted in correlation coefficients of 
0.9991 and 0.9975. Finally, high correlation coefficients of 0.88 and 0.82 were achieved by 
incorporating the test data from other studies. 
CONCLUSION: Leachate recirculation enhanced the reduction of chemical oxygen demand 
and the production of methane in bioreactors. Ammonium concentrations initially increased 
and later decreased due to waste adsorption and bacterial assimilation. The artificial neural 
network applied for predicting the cumulative methane production from municipal solid 
waste displayed a robust generalizability when tested on the data from other studies. The 
neural network was not significantly affected by changes in waste chemical properties, 
laboratory conditions, and recirculation rate. However, it showed a significant sensitivity to 
variation of waste mechanical properties. 
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INTRODUCTION
Waste landfills are the ultimate repositories 

for discarded or unusable materials, particularly 
municipal solid wastes (MSW). For instance, 
approximately 81 million tons of waste are landfilled 
annually in the UK. In 2016, 58 percent (%) of the 
total solid waste generated in the US was disposed 
(Alabi et al., 2019). Leachate production and 
management are acknowledged as significant 
obstacles associated with the environmentally 
sound operation of municipal landfills. Recirculating 
leachates through MSW landfill accelerates solid 
waste stabilization and, consequently, increases 
gas production (Liu et al., 2023). Over the past two 
decades, numerous physical, chemical, and biological 
treatment processes have been evaluated for their 
ability to treat landfill leachate (Bah et al., 2023; Guo 
et al., 2022; Luo et al., 2020). These processes are 
typically employed for ex-situ leachate treatments. 
Nevertheless, treating leachate ex-situ can pose 
significant challenges and incur substantial costs. 
Moreover, the characteristics and flow of landfill 
leachates are influenced by some factors such as 
composition of solid wastes, precipitation and runoff 
patterns, landfill age, and permeability and type of 
cover (Luo et al., 2020). Most leachate components 
are typically present in elevated concentrations 
during the first year of landfill operation, and these 
concentrations tend to decrease as the landfill 
ages (Kulikowska and Klimiuk, 2008). High levels 
of ammonia and organic matter in landfill leachate 
lead to significant treatment challenges (Samimi and 
Shahriari Moghadam, 2018). There are numerous 
options for landfill leachate treatment, such as 
complex and expensive ex-situ physical-chemical 
and biological processes, that address high-strength 
organics and inorganics including different forms of 
nitrogen. Numerous studies have documented various 
leachate treatments, including anaerobic sequencing 
batch reactors and anaerobic hybrid bed filters (Wei 
et al., 2021), upflow sludge blanket reactors (Govahi 
et al., 2012), and electro-Fenton method (Guvenc 
et al., 2019). These treatment procedures can incur 
substantial costs. Biological processes have proved to 
be highly effective when applied to relatively young 
leachates consisting primary volatile fatty acids, but 
their effectiveness decreases when applied to older 
leachates (Bove et al., 2015). Numerous scholars 
have conducted extensive research documenting 

the benefits of leachate recirculation in sanitary 
landfills. According to studies, leachate recirculation 
generates stabilized leachates with relatively low 
concentrations of degradable carbon compounds 
and high concentrations of ammonia (Haydar and 
Khire, 2005; Hussein and Ibrahim, 2023). In case of 
biological degradation, the analytical parameters 
involved exhibit non-linear characteristics (Ćosić et 
al., 2013). Artificial neural network (ANN) techniques 
have demonstrated a greater efficiency in accurately 
modeling these non-linear relationships compared 
to traditional statistical methods (Desai et al., 
2018; Rumaling et al., 2022; Samimi and Mohadesi, 
2023). ANNs have become increasingly popular 
as a useful tool for modeling the environmental 
systems (Muksin et al., 2023). They have been widely 
applied in different domains, including air pollution 
modeling (Cabaneros et al., 2019) and predicting the 
performance of wastewater treatment plants (El-
Rawy et al., 2021). ANNs, however, have not been 
extensively studied in terms of laboratory settings for 
anaerobic digestion (Nair et al., 2016; Tufaner and 
Demirci, 2020). In a study, the utilization of ANN was 
explored to forecast biogas production and chemical 
oxygen demand (COD) removal rates in the process 
of anaerobic digestion (Nair et al., 2016). The results 
of this experiment demonstrated the effectiveness 
of the ANN method in accurately predicting biogas 
production and COD removal rates. Another study 
indicated a strong correlation between the age of 
waste and the methane (CH4) concentration, which 
was successfully modeled using an ANN (Ozkaya et 
al., 2007). Additionally, a separate study proposed an 
ANN approach to simulate the functionality of a biogas 
wastewater treatment system, accurately predicting 
the relationship between the system output and 
its operational parameters (Karamichailidou et al., 
2022). An ANN model developed by Behera et al. 
(2015) was utilized to predict the CH4 concentration 
in biogas. The input data from this model consisted 
of the biogas extraction rate and the ratio of landfill 
leachate to food waste leachate.The results of this 
study showed that the backpropagation algorithm 
effectively predicted the percentage of CH4 in biogas. 
Despite the utilization of only two input parameters, 
the ANN model demonstrated a remarkably high 
prediction accuracy. This could be attributed to the 
inclusion of the biogas extraction rate as an input, 
which had a direct relationship with CH4 production. 
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The utilization of ANN was justified by its capability 
to comprehend intricate non-linear relationships, 
while the association between biogas extraction 
rate and CH4 production was characterized by a 
simple non-linear pattern. In a recent study, Bao 
et al. (2023) employed a backpropagation ANN to 
develop a model for optimizing anaerobic digestion. 
Their findings indicated that the model successfully 
achieved a high degree of fitting with the actual 
data, indicating its accuracy in predicting the biogas 
production. This finding highlighted the practical 
application value of the model in anaerobic digestion. 
However, it is important to note that the study 
included an excessive number of factors in predicting 
biogas production, involving ten parameters. One 
of the primary objectives of ANN design is accurate 
output prediction with minimal data requirements. 
The selection of input data plays a critical role 
in determining the applicability, economy, and 
accuracy of ANNs. The present study emphasized the 
importance of selecting the best input data for ANNs 
based on experimental results and previous studies. 
The current study explored two distinct anaerobic 
systems as in-situ organic and nitrogen removal 
methods (System 1 and System 2). In System 1, which 
consisted of a reactor for fresh waste, the leachate 
produced by the reactor was recirculated directly into 
the fresh waste. In contrast, System 2 was established 
where the fresh waste reactor and a degraded waste 
reactor were connected, and the process involved 
recirculating leachate between the two reactors. The 
primary objective of this study was to investigate the 
methods for enhancing the rate of CH4 production and 
reducing the biostabilization time for MSW treatment. 
The experiment aimed to examine the impact of 
operational parameters on the biodegradation of 
MSW within a simulated anaerobic bioreactor landfill. 
There was limited exploration of the application and 
generalization of ANN in predicting cumulative biogas 
production and CH4 content, based on the laboratory-
measured parameters that influenced the process. 
This study aimed to address this gap by investigating 
the potential of ANN in predicting the degradation 
rate of MSW in the bioreactors. Generalizability of 
the ANN was assessed by evaluating its performance 
on completely unseen data from other studies, 
representing the pioneer application of such test. 
This study has been conducted in the Environmental 
Engineering Laboratory, Department of Civil 

Engineering, University of Birjand, Birjand, Iran in 
2023.

MATERIALS AND METHODS
The MSW was sourced from the Saravan Landfill, 

a municipal landfill located in the northern region of 
Tehran, Iran. This landfill has been operational since 
1984. The waste sorting process involved the removal 
of plastic bags and inorganic waste. The remaining 
waste was then pretreated and tattered by blade 
shredder to ensure optimal flow of leachate in the 
laboratory-scale landfills. 

Experimental apparatus
The simulated landfill reactors consisted of square-

based columns with internal dimensions of 400 
square centimeters (cm2) and vertical height of 130 
centimeters (cm), yielding a volume of 40 liters (L). 
These columns were made up of steel and Plexiglas. 
To maintain the internal temperature, 10 cm-thick 
polystyrene panels were used in order to insulate the 
columns, which were then placed in a temperature-
controlled room at 30±2 °C. To prevent leachate 
outlet clogging, a 15-cm gravel drainage layer was 
incorporated into the lower portion of the reactors. 
Approximately 24 kilograms (kg) of fresh waste was 
used to load Reactor A and Reactor B, while Reactor 
C was loaded with approximately 44 kg of degraded 
waste. Afterward, the 15-cm layer of fine gravel was 
applied to cover the waste, and a water distributor 
was installed on top of each reactor. Subsequently, 
approximately 2 L of deionized water was used to 
generate the desired amount of leachate.

Sampling and analytical methods
Two distinct experimental methods were employed. 

In System 1, the leachate from Reactor A was collected 
and recirculated into a tank every 24 hours (Fig. 1). In 
System 2, Reactor C was supplied with the leachate 
from Reactor B. The leachate produced in Reactor C 
was recirculated back to Reactor B on a 24-hour cycle. 
The process of leachate recirculation in both systems 
was facilitated using peristaltic pumps. The schematic 
diagram of both systems is presented in Fig. 1.

The composition of the MSW was analyzed in terms 
of its elemental composition including carbon (C), 
hydrogen (H), nitrogen (N), oxygen (O), and sulfur 
(S) using the PerkinElmer 2400 Series II CHNS/O 
Elemental Analyzer. Table 1 presents the physical 
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and chemical characteristics of the MSW. Leachate 
samples were collected from the reactors every 6 
days to measure the concentrations of biological 
oxygen demand (BOD5), COD, ammonium-nitrogen 
(NH4

+-N), and potential of hydrogen (pH) values. The 
pH value was measured using a HACH pH meter, 
while BOD5, COD, and NH4

+-N concentrations were 
determined according to the standard methods 
for the examination of water and wastewater (Rice 
et al., 2012). A modified water displacement set-
up was employed to measure the biogas from 
various runs. To quantify the total CH4 produced, 
biogas was passed through water containing 2% 
volume per volume (v/v) sulfuric acid (H2SO4). The 
set-up involved connecting the biogas outlet of the 
reactor to a gas collection vessel filled with a H2SO4 

solution. As the biogas released from the reactor, it 
bubbled through the solution. The H2SO4 solution 
was intended to absorb and react with specific 
components of the biogas, such as CO2. The volume 
of CH4, which did not not react with the solution, 
was determined by measuring the displacement of 
water in the gas collection vessel (Sponza and Ağdağ, 
2004). To determine the CH4 content, biogas samples 
were collected at 6-day intervals during the study. 
These samples were analyzed using a Young Lin gas 
chromatograph (model YL6100). The measurement 
setup was equipped with a PORO PACK Q column and 
a thermal conductivity detector (TCD).

ANN modelling
The CH4 content and cumulative biogas production 

      
                                    (a)                        (b) 

 
 
 

Fig. 1: Schematic diagram of (a) System 1, and (b) System 2 
   

Fig. 1: Schematic diagram of (a) System 1, and (b) System 2

Table 1: Characteristics of fresh and degraded MSW (% of total weight) 
 
 

Physical composition  Fresh  Degraded Chemical characteristics Fresh Degraded
Food waste  65  0 Moisture content 28.32 46.23
Plastic  12  10.2  C  41.26  24.86 
Paper  9  7.5  H  6.28  6.31 
Textiles  2  1.2  O  39.72  42.54 
Metal  0.5  0.2  N  2.57  2.15 
Wood  2  1.5 S 0.51 0.26 
Glass and others  9.5  9.7  Volatile solid  39.41  12.46 
Soil  0  69.7       

 
   

Table 1: Characteristics of fresh and degraded MSW (% of total weight)
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were modeled using ANN methodology. The pH, COD, 
hydraulic retention time (HRT), and NH4

+-N were 
selected as input parameters for the ANN. These 
parameters were selected based on their profound 
influence on the microbial processes integral to 
methane production (Al-Dailami et al., 2022). These 
parameters served as pivotal indicators, enabling 
the neural network to unravel both the qualitative 
and quantitative nuances of biological activity within 
the reactor. The ANN model was developed using 
a matrix laboratory (MATLAB) R2018b, a multi-
paradigm numerical computing environment, with 
the support of the Neural Network Toolbox provided 
by MathWorks, Inc. The ANN architecture utilized 
included different layers such as input, hidden, and 
output layers. The neurons in the input layer indicated 
the independent variables and were connected to the 
neurons in the hidden layers by weighted connections. 
These weights determined the importance of 
the input data for each node, and a bias term was 
integrated to govern the size of the input data. The 
obtained values were multiplied by the Tan-Sigmoid 
activation function. The output layer determined 
the values of the output variables through the Pure-
linear activation function. Tan-Sigmoid activation 
function is frequently utilized in ANNs to introduce 
non-linearity, enabling complex mappings within the 
hidden layer. In contrast, the output layer employs 
the Linear activation function to create a mapping 
that is linear in nature without any further non-linear 
transformation. This pairing of activation functions 
allowed for efficient modeling and prediction within 
the ANN architecture (Lee et al., 2020). The values 
obtained from the ANN model were compared to the 
experimentally measured values. The error between 
the predicted and observed values was calculated 
and used to update the weights and bias of each 
neuron in the network. This approach enabled precise 
modeling and prediction of the intended outcomes. 
The proposed ANN model comprised two distinct 
ANNs. The first ANN (ANN1) was designed to predict 
the CH4 content (%), while the second ANN (ANN2) 
was developed to estimate the cumulative CH4 
production liter per kilogram (L/kg) dry weight. The 
inputs to the model included analytical parameters 
such as pH, COD, NH4

+-N, and HRT. To ensure objective 
evaluation, the experimental data were divided into 
three sets which had been randomly selected from 
different stages of the experimental study to prevent 

bias towards any particular stage. The first set 
comprised 70% of the data and was used for training 
the model and optimizing its parameters. The second 
set accounted for 15% of the data and was used for 
independent testing while serving as a benchmark for 
evaluating the model performance. The validation set 
constituted the remaining 15% of the data and was 
utilized to refine the hyperparameters of the model. 
In the ANNs training, the Levenberg Marquardt feed-
forward back propagation perceptron (LMFFBP) 
algorithm was utilized, and the performance 
assessment was done using the mean squared error 
(MSE) metric. LMFFBP enables faster prediction and 
correction of limitations by manipulating the flow 
of input data within the ANN layers. This technique 
demonstrates excellent capability and robustness in 
addressing fitting problems (Mougari et al., 2021). 
Control of the randomly-selected datasets, as well as 
determining the number of hidden layers, neurons, 
and activation functions are crucial in identifying the 
optimal architecture of ANN in terms of accuracy 
and simplicity. It is also essential to balance model 
complexity and data learning capacity. An ANN with 
overabundance of hidden layers and neurons may 
only store data without effectively learning from 
it. Hence, the most optimal structure for an ANN 
is the one that leads to accurate predictions with 
the least hidden layers and neurons in the hidden 
layer (Kerdan and Gálvez, 2020). In this study, the 
adopted ANN architecture included one hidden 
layer. The optimal number of neurons in the hidden 
layer was determined through an iterative process 
of trial and error. The performance of the ANN 
model was evaluated based on the statistical criteria 
including MSE and correlation coefficient. Once 
the optimal ANN was obtained, its effectiveness 
and generalizability was evaluated by testing it on 
previously unseen data from other studies. Such an 
evaluation was done for the first time to ensure the 
ability of the ANN to generalize beyond the specific 
dataset used for training, testing, and validation. 

RESULTS AND DISCUSSION
Fig.  2 depicts the concentrations of COD in 

the leachate from Reactors A, B, and C. The 
experiment showed significant variations in the COD 
concentrations. At the beginning of the experiment, 
COD of the leachate from the fresh MSW in System 
1 increased rapidly, reaching a maximum of 91,400 
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mg/L on day 66. Notably, no significant decrease in 
COD concentrations was observed in the leachate 
produced by System 1. The rapid increase in COD 
concentrations in Reactor A could be explained by 
the presence of easily biodegradable organic matter 
in leachate from young landfills. This result was 
consistent with the findings of the study conducted 
by Ahn et al. (2002) and Marttinen et al. (2013). They 
observed higher COD concentrations in leachate from 
young landfill sites due to the higher proportion of 
biodegradable organic material. In reactor A, the 
absence of acetogenic bacteria in the fresh waste 
led to the occurrence of only two stages: hydrolysis 
and acidogenesis. Acidogenic bacteria (clostridium, 
bacteroides, and enterococcus), convert complex 
organic compounds into simpler compounds such 
as volatile fatty acids (VFAs) (Marttinen et al., 2013). 
This breakdown of organic matter typically results 
in the release of COD, leading to an increase in 
COD concentration in the leachate. In System 2, the 
leachate COD concentrations in Reactor B increased 
initially for 30 days after recirculation. This was 

followed by a gradual decrease from 61,600 mg/L 
on day 30 to 6,270 mg/L on day 144. (Fig. 2), which 
could be attributed to the accumulation of carboxylic 
acid (Saadoun et al., 2021). In contrast, Reactor C 
consistently maintained low effluent COD, indicating 
the successful removal of organic contaminants from 
the leachate by System 2.

Fig. 3 depicts the time-dependent degradation 
efficiency of COD and NH4

+-N in System 2. During the 
entire operation, the degradation efficiency of COD 
fluctuated between 65% and 90%. In degraded MSW, 
the presence of acetogenic bacteria (acetobacterium, 
clostridium, and syntrophomonas) facilitated further 
metabolism of VFAs generated during acidogenesis. 
These acetogenic bacteria convert VFAs into acetic 
acid, hydrogen (H2), and carbon dioxide (CO2) through 
their metabolic activities (Saadoun et al., 2021). 
Consequently, this conversion process contributed 
to a notable reduction in COD concentration. COD 
removal efficiency in System 2 decreased with the 
decrease of COD concentration in the leachate. The 
highest COD removal efficiency in Reactor B  was 

 
 
 

. 2: Changes in the COD concentration of leachate over time in the bioreactors 
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Fig. 2: Changes in the COD concentration of leachate over time in the bioreactors
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obtained as 90% (Fig. 3). The different biodegradability 
of organic matter was widely recognized in leachate. 
The BOD5/COD ratio is frequently used to evaluate 
biodegradability; a higher value indicates a greater 
proportion of biodegradable organic material. On day 
144, the BOD5/COD ratio of the leachate from System 
1 was 0.38, while the BOD5/COD ratio of leachate 
from System 2 was 0.09. Due to the presence of 
large molecule compounds, such as humic acids, 
which are challenging to biodegrade, the residual 
organic matter in the leachate was nonbiodegradable 
(Keyikoglu et al., 2021). Consequently, the maximum 
COD removal efficiency was capped at 90%.

NH4
+-N

According to Fig. 4, the concentrations of 
ammonium in leachate in reactor A increased 
due to the accumulation of ammonium from the 
recirculated leachate (Feng et al., 2019). Similarly, 
the concentrations of ammonium in the leachate 
in Reactors B and C experienced an initial increase 
within the first 42 days, which could be attributed 

to the breakdown of nitrogenous compounds 
specifically in Reactor B. As the two reactors (System 
1 and System 2) operated under anaerobic conditions, 
the absence of nitrification microorganisms, which 
are effective in aerobic conditions (Peng et al., 
2022), caused ammonia-nitrogen to accumulate in 
them. The concentrations of NH4

+-N in the leachate 
in Reactor A showed a significant increase, with the 
highest amount recorded on day 96 when the NH4

+-N 
concentrations reached 3060 mg/L (Fig. 4). During 
hydrolysis, complex organic compounds are broken 
down into simpler forms, such as sugars, amino acids, 
fatty acids, and other organic nitrogen-containing 
compounds releasing ammonium as a byproduct 
(Price et al., 2013).

However, under anaerobic conditions in System 
2, the NH4

+-N concentrations in Reactors B and C 
began to decrease on day 42 due to the degraded 
MSW adsorption capacity and the assimilation of 
NH4

+-N by anaerobic microorganisms to support their 
growth (Feng et al., 2019). On day 42, the maximum 
concentrations of ammonium in Reactors B and C were 

 
 
 

Fig. 3: COD and NH4
+‐N removal efficiencies in System 2 
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obtained as 2650 mg/L and 1800 mg/L, respectively. 
After 42 days, the NH4

+-N concentrations in leachates in 
Reactors B and C decreased, with Reactor B exhibiting 
a greater rate of NH4

+-N decrease. On day 144, both 
reactors gave an identical NH4

+-N concentration of 
1600 mg/L. In System 2, NH4

+-N was removed from 
the leachate by adsorption in Reactor C. In this 
system, the initial efficiency of ammonium removal 
was high and subsequently decreased gradually. 
Once the absorption capacity of NH4

+-N in degraded 
waste reached saturation, the removal efficiency of 
System 2 decreased to approximately 0.5% on day 96 
and remained around 0% in later stages. Obviously, 
the removal efficiencies of both COD and NH4

+-N 
decreased over a certain period, with the NH4

+-N 
removal efficiency declining more rapidly compared 
to the COD removal efficiency (Fig. 3). In biological 
treatment systems, microorganisms compete for 
available COD and NH4

+-N as energy sources. If there 
is an excess of COD or other easily degradable organic 
matter, microorganisms may prioritize the utilization of 
COD over NH4

+-N (Wang et al., 2020). 

pH
Variation in pH levels of anaerobic leachate in all 

reactors is illustrated in Fig. 5. In Reactor A, the pH 
of the leachate increased marginally throughout 

recirculation. Following recirculation, the pH in 
Reactor A rose from 5.9 on day 6 to 7.2 on day 
144. These results indicated a tendency for pH to 
increase after leachate recirculation, which could 
be attributed to the stimulation of hydrolytic and 
fermentative bacteria. Hydrolytic and fermentative 
bacteria breakdown complex organic compounds into 
simpler forms through hydrolysis and fermentation 
as a part of recirculation process. The breakdown 
of organic compounds results in the release of 
different byproducts, such as VFAs and organic acids 
(Ratti et al., 2013). The accumulation of VFAs and 
organic acids may decrease the pH of the leachate. 
The accumulation of VFAs and similar compounds 
in high-temperature reactors has been attributed to 
their anaerobic degradation in syntrophic reactions. 
Syntrophic bacteria play a vital role in anaerobic 
digestion by promoting the conversion of VFAs into 
CH4. The bacteria and methanogens form a symbiotic 
relationship in the final step of CH4 production 
(Li et al., 2012). Syntrophic bacteria consume 
the VFAs produced by fermentative bacteria, 
thereby producing hydrogen and carbon dioxide as 
byproducts. Methanogens use these byproducts 
to produce CH4. Additionally, sulfate-reducing and 
homoacetogenic bacteria consume VFAs and organic 
acids, resulting in the production of hydrogen sulfide 

 
 
 

Fig. 4: Changes in the NH4
+‐N concentration of leachate over time in the bioreactors 
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and acetate, respectively (Singh et al., 2021). Acetate, 
as a compound to other organisms, can be valuable, 
or it may be converted into CH4 by methanogens 
in later steps of anaerobic digestion. This process 
leads to a decrease in the concentration of VFAs and 
organic acids and an increase in pH in the leachate. 
In Reactor B, the pH of the leachate increased from 
6 to 7 during the first 48 days of recirculation and 
then continued to rise to over 7 from day 48 to day 
144 (Fig. 5). The highest pH value in this reactor  was 
recorded on day 108 reaching 7.5. Throughout the 
operation, the pH of leachate in Reactor C remained 
above 7 as a result of the presence of degraded waste 
in this reactor. The maximum and minimum pH values 
for leachate in Reactor C were 8 and 7.2, respectively. 
In Reactor B, fermentation and bacterial processes 
acting on biodegradable compounds produced and 
accumulated acids (Ratti et al., 2013). Methanogenic 
bacteria in Reactor C converted the acids accumulated 
in Reactor B into CH4 and carbon dioxide. As a result, 
the leachate pH in the Reactor B was found to be 
lower compared to the pH of the effluent leachate 
from Reactor C. Therefore, the pH value of the effluent 
leachate from Reactor C decreased over time as 
leachate was recirculated from Reactor B to Reactor 
C. However, the pH variation, occurrin gafter 114 
days, was minimal during the stable phase. The stable 

phase of leachate recirculation is characterized by pH 
stabilization, which results from the development 
of a balanced microbial community and stable 
metabolic processes (Talalaj, 2015). In Reactor B, pH 
balance resulted from the steady-state consumption 
of acids by the methanogenic bacteria in Reactor C. 
The decomposition of solid waste undergoes three 
distinct phases within the lab-scale landfills (Reactors 
A and B). Initially, complex organic matter undergoes 
hydrolysis, resulting in the formation of soluble 
molecules. During the next stage, these molecules 
are further transformed into carbon dioxide, 
hydrogen, simple organic compounds, and VFAs. The 
third stage involves the production of CH4 through 
the decomposition of acids into CH4 and CO2, or the 
reduction of CO2 with H2. In this study, Reactor C 
balanced the growth of the acid-production and CH4-
production phases, accelerating the decomposition 
of organic matter in System 2. Based on Fig. 5, the 
recirculation of leachate from degraded MSW to 
fresh MSW resulted in a notable increase in pH values 
in Reactor B compared to Reactor A. Consequently, 
a faster degradation of MSW in System 2 was 
expected. These findings were consistent with the 
results of other studies (Luo and Wong, 2019). The 
characteristics of the leachate effluent from Reactors 
A and B before and after completion of treatment are 

 
 
 
 

Fig. 5: Changes in the leachate pH over time in the bioreactors 
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presented in Table 2.

CH4 content and cumulative CH4 production
Figs. 6 and 7 illustrate the results for CH4 content 

in the biogas and cumulative CH4 production from 
Reactors A, B, and C. Fig. 6 shows that the type of 
recirculation method and the age of waste are 
involved in the CH4 gas concentration variations. The 
CH4 content in Reactor A was below 10% during the 
whole experiment. The CH4 content in biogas from 
System 2 indicated the stability and performance of 
anaerobic digestion. The CH4 content in reactor B 
showed a rapid increase after 36 days of digestion 
and reached 48% on day 144. The CH4 concentration 
in the biogas from reactor C showed a significant 
increase from 26% to 63% between day 6 and day 
36 and then remained stable (Fig. 6). Cumulative 
CH4 production in fresh waste in reactor B reached 
26.8 L/kg dry weight, which was 4.31 times higher 

than those in Reactor A (6.21 L/kg dry weight) (Fig. 
7). These findings were consistent with the results 
reported in previous studies (Behera et al., 2015; Gao 
et al., 2023). According to Figs. 2, 5, and 6, on day 
36, reactor B entered the methanogenesis phase, 
indicated by the increase of CH4 content and leachate 
pH and decrease of leachate COD concentrations. 
Reactor B reached this stage 48 days earlier as 
compared to Reactor A. The performances of reactors 
A and B indicated that the addition of leachate from 
degraded waste decreased the startup time and 
enhanced the biogas production from fresh waste. 
Recirculation of the leachate in fresh waste triggers 
accelerated hydrolysis and acidification, leading to 
the accumulation and inhibition of intermediates 
(Gao et al., 2023). When the leachate is recirculated 
back into fresh waste, it introduces additional 
moisture and soluble compounds, providing optimal 
conditions for microbial activity. It also enhances the 

Table 2: Characteristics of the leachate from Reactors A and B 
 
 
 

Parameter  Initial leachate  Treated leachate 
Reactor A and B  Reactor A  Reactor B 

COD (mg/L)  31525 79620 6410 
NH4

+‐N (mg/L)  772  2768  1530 
pH  6  7.22  7.29 
BOD (mg/L)  16850  30255  580 

 
   

Table 2: Characteristics of the leachate from Reactors A and B

 
 
 

Fig. 6: Methane content observed and predicted over time in the bioreactors 
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Fig. 6: Methane content observed and predicted over time in the bioreactors
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availability of water and nutrients, promoting the 
growth and activity of hydrolytic microorganisms. 

The stabilization phase in reactor C, as indicated 
by stable concentration of COD (Fig. 2), was attained 
prior to the commencement of leachate recirculation. 
Subsequently, a considerable increase in CH4 
production following the initiation of recirculation 
indicated the ability of methanogens to effectively 
utilize organic acids from the ftresh waste leachate, 
even when the waste decomposition had already 
reached the stabilization phase. Confirmation of 
this ability of methanogens has been established in 
previous studies (Yang et al., 2021). Methanogens 
utilized these organic acids as a carbon source for 
their metabolism, converting them into CH4 gas. 
Consequently, the consumption of organic acids by 
methanogens reduced the concentration of organic 
acids in reactor B and increased the carbon source in 
reactor C, enhancing CH4 production in both reactors. 
As a result of this process, reactor C showed a notable 
increase in cumulative CH4 production, with the 
volume significantly rising from day 24 onwards. By 
day 144, the cumulative CH4 production reached 59 L/
kg dry weight, indicating a substantial enhancement 
in CH4 production within the system. The maximum 
daily CH4 production in Reactor C occurred from day 
18 to day 24 of the experiment, reaching 2.09 L/day/

kg dry weight (Fig. 7). These findings were consistent 
with the results reported in previous studies. In a study 
conducted by Sandip et al. (2012), the cumulative CH4 
production on day 270 of the experiment was 67 L/kg 
dry weight, with a maximum daily CH4 production of 
1.68 L/day/kg dry weight. Another study reported a 
cumulative CH4 production of 50 L/kg dry weight on 
day 250 for degraded MSW (Sanphoti et al., 2006). 
In a study by Ahmadifar et al. (2016), the cumulative 
CH4 production for degraded MSW was recorded as 
54.87 L/kg dry weight on day 180, with a maximum 
daily CH4 production of 1.35 L/day/kg dry on day 112. 
Methanogenic bacteria in a bioreactor containing 
degraded waste need time to adjust to a new organic 
load when fresh waste is introduced. Consequently, 
the initiation of methane production in such reactors 
can be protracted (Ahmadifar et al., 2016). Starting 
from day 36 (Fig. 2), COD concentration in reactor B 
exhibited a simultaneous decrease with the increase 
of CH4 production in reactors B and C. This decline 
could be attributed to the carbon consumption by 
the methanogenic bacteria existing in reactor C. It 
has been established that an NH4

+-N concentration 
of over 2500 mg/L is toxic to methanogenesis, 
regardless of temperature and pH levels (Feng et al., 
2019; Liu and Sung, 2002). In this study, a comparison 
was made between NH4

+-N concentration (Fig. 4) and 

 
Fig. 7: Cumulative methane production observed and predicted over time in the bioreactors 
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CH4 yields, revealing that NH4
+-N played a crucial role 

in determining the initiation time of CH4 production. 
Based on the analysis on day 36 (Figs. 4 and 6), a 
significant increase in the CH4 content was observed 
in reactor B. This increase occurred simultaneously 
with a decrease in NH4

+-N concentration.

ANN modelling
To perform comprehensive analysis, the modeling 

samples were randomly selected from different 
stages of the experiment and included in training, 
validation, and testing sets. The data used for testing 
the ANN are presented in Table 3.

The optimal network architecture was determined 
based on statistical criteria, MSE, and correlation 
coefficient (R). According to Table 4 in ANN1 and 
ANN2, as the number of neurons exceeded 4 and 
6 respectively, MSE of the training data decreased, 
but MSE of the test data increased. Increase of the 
number of neurons in ANN improved the fitting of 
the training data, potentially decreasing the MSE of 
the training data. However, it was likely that very high 
number of neurons could cause the ANN to overfit 
the training data, leading to an elevated MSE for 
the test data (McElroy et al., 2021). This increase in 
MSE for the test data indicated that the ANN was not 
generalizing effectively and  could not preserve the 
patterns and relationships in the data.

For accurate prediction of CH4 content, the optimal 
configuration for ANN1 included one hidden layer 
with 4 neurons. The best setup for ANN2 to precisely 
forecast the cumulative CH4 production entailed one 
hidden layer containing 6 neurons. Both ANNs utilized 
the Tan-Sigmoid activation function for the hidden 
layer and the Pure-linear activation function for the 
output layer. Utilization of the datasets obtained from 
MATLAB neural network learning for this analysis, and 

the results of ANN1 and ANN2 training performances 
are shown in Fig. 8a and 8b, respectively. By 
representing the experimental data (target value) 
and the predicted results (output) in plot form, the 
regression results demonstrated the relationship 
between them. Fig. 9a and 9b show the regression 
results of the significant correlation coefficient for 
CH4 content and cumulative CH4 production in the 
training, validation, and testing data.

The ANN1 and ANN2 models exhibited exceptional 
performances during the validation, leading to the 
best validation performances of 0.716 and 0.634, 
respectively (Fig. 8). This indicated the models’ ability 
to accurately predict the CH4 content and cumulative 
CH4 production based on the input parameters. The 
training determination coefficients of 0.9990 for 
ANN1 and 0.9995 for ANN2 further confirmed the 
successful learning of the relationship between input 
and output variables by the ANNs. In addition, the 
validation R-values of 0.9997 for ANN1 and 0.9981 for 
ANN2 indicated the strong generalization ability of 
the models. The overall performance of the dataset 
showed high R-values of 0.9991 and 0.9975 for 
ANN1 and ANN2 respectively, suggesting a thorough 
comprehension of the complex biological process in 
the system (Fig. 9). The strong correlation in among 
the test data indicated the model’s capacity to 
understand the complex modeling process. Modeling 
biological systems is inherently more challenging than 
physical or chemical processes due to the involvement 
of living microorganisms and their complex 
characteristics and responses to changing conditions 
(Nair et al., 2016). The high R-value obtained for the 
test data indicated an optimized selection of effective 
parameters in the input data. ANNs are mathematical 
models that learn patterns and relationships from 
data. However, they do not possess an inherent 

Table 3: Input data for testing the ANN model 
 

Reactor  HRT (Day)  COD(mg/L)  NH4
+‐N (mg/L)  pH 

A 
6  34710  790  5.87 
60  91320 2467 5.98
132  79620  2580  7.22 

B 

12  54710 1064 6.01
84  22640  1645  7.19 
114  10180  1371  7.47 
126  7160  1500  7.36 

C 
6  3010  0  7.93 
72  2640 1612 7.65
126  1880  1467  7.43 

 
   

Table 3: Input data for testing the ANN model
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understanding of the modeled process. For effective 
learning and predicting, ANNs depend on accurately 
selected and represented inputs (Hatata et al., 2021). 
In a study,  pH, moisture content, total volatile solids, 
VFAs, and HRT values were included as the input 
data for ANN (Nair et al., 2016). In the current study, 
the analysis of test data revealed a notably higher 
R-value surpassing the R-value reported by Nair et al. 
(2016). This finding provided a compelling evidence 
for the advanced proficiency of the developed ANN 
in understanding the complexities of the biological 

processes. As discussed earlier, biological factors 
that affect biogas production could significantly 
impact the concentration of COD and NH4

+-N. In the 
present study, these parameters along with pH and 
HRT were included in the input data. This approach 
effectively improved the comprehension of the 
biological process by the ANN. The performance of 
ANN in predicting CH4 production was compared with 
other methods (Table 5). The ANN demonstrated a 
better performance compared to other methods for 
predicting CH4 production (Table 5). However, it is 

Table 4: MSE values for ANNs with different numbers of neurons in the hidden layer 
 

Number of neurons  CH4 content  Cumulative CH4 production 
Train  Test  Train  Test 

3  2.13  9.86  76.24  95.62 
4  0.74  0.72  15.75  38.67 
5  0.71 3.59 2.61 11.65
6  0.68  9.17  0.52  0.63 
7  0.53  23.63  0.48  6.85 
8  0.31  22.25  0.41  19.42 

 
   

Table 4: MSE values for ANNs with different numbers of neurons in the hidden layer

 
(a) 
 

 
(b) 
 
 

Fig. 8: MSE variation with Epochs during the training process of (a) ANN1, and (b) ANN2 
   

Fig. 8: MSE variation with Epochs during the training process of (a) ANN1, and (b) ANN2
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(a) 
 

(b) 
Fig. 9: Comparison of the observed and predicted (a) CH4 content, and (b) cumulative CH4 production for training, 

validation, and testing sets  
 

Fig. 9: Comparison of the observed and predicted (a) CH4 content, and (b) cumulative CH4 production for training, validation, and testing sets
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worth noting that there was no significant difference 
between the ANN and the adaptive neuro-fuzzy 
inference system (ANFIS) in terms of performance. 
The results presented in Table 5 also demonstrated 
that the achieved prediction quality was superior 
to the prediction quality reported in recent studies 
focusing on biogas production modeling.

The impact of removing specific input variables 
on the performance of ANN was investigated for 
their combined effect on cumulative CH4 production. 
Eliminating the pH parameter resulted in a lower 
R-value (0.8801) and a higher MSE (21.79) compared 
to ANN2 in the test and validation data, respectively. 
Exclusion of the COD concentration led to a lower 
R-value (0.751) and higher MSE (44.52). Similarly, 
removing the HRT parameter resulted in a R-value 
of 0.7731 and a MSE of 29.73. Moreover, exclusion 
of the NH4

+-N concentration yielded a R-value of 
0.835 and a MSE of 23.39. The results suggested that 
the combined influence of the selected parameters 
could affect cumulative CH4 production. According 
to the results obtained from MSE and R-values in 

the test and validation data, it could be inferred that 
the COD concentration had the highest influence on 
cumulative CH4 production. Conversely, the pH level 
was found to have the lowest impact on cumulative 
CH4 production among the studied parameters. The 
weights of the ANN were employed to estimate the 
relative importance of the operational parameters on 
cumulative CH4 production. The results showed that 
COD and HRT had a stronger influence, with relative 
importance values of 39.03 and 28.34, respectively. 
NH4

+-N and pH had relative importance values 
of 18.54 and 14.09, respectively. After successful 
development of a reliable and high-performing ANN 
model, the trained ANN was employed to optimize 
the process conditions with the aim of maximizing 
cumulative CH4 production. Utilizing the trained ANN 
as a fitness function, a genetic algorithm (GA) was 
implemented for this purpose. For each GA iteration, 
the ANN model assessed methane production, 
yielding a fitness value. The GA was executed for 200 
iterations with a population size of 25 individuals. 
During each generation, the individuals producing 

Table 5. Comparison of the CH4 production prediction models 

Feedstock  Reactor type  Input parameters  Method  R‐
value  MSE  References 

MSW  Landfill 

Total waste landfilled, organic 
content, temperature, 
precipitation, landfill age, depth, 
and landfill cover 

Fuzzy  0.951  71.31 
Mohsen and 
Abbassi, 2020  LandGEM  0.804  96.75 

MSW 
Anaerobic 
bioreactor 
landfill 

Amount of leachate, 
temperature, methane content, 
pH, COD 

Neuro‐fuzzy  0.71  3.62 
Mehrdad et al., 

2021  
Support vector 

machine  0.90  3.37 

ANN  0.98  3.21 

Sewage 
sludge 

Anaerobic 
digester reactor 

Sludge inflow, temperature, pH, 
total solid, volatile solid, organic 
acid, alkalinity, HRT, and organic 
loading rate (OLR) 

Multiple linear 
regression  0.722  11.03 

Bao et al., 2023 
ANN  0.794  10.23 

Molasses 
wastewater 

Pilot‐scale 
upflow 

anaerobic sludge 
blanket 

OLR, COD removal rate, influent 
and effluent alkalinity, and pH 

Fuzzy‐logic  0.8721  8.15  Turkdogan‐
Aydınol and 

Yetilmezsoy, 2010 ANN  0.9847  4.86 

Palm oil mill 
effluent 

Anaerobic 
digester reactor 

Recirculation ratio, pH and 
temperature 

Response 
surface 

methodology 
0.9512  0.51 

Chong et al., 2023  
ANN  0.977  0.23 
ANFIS  0.976  0.23 

High polluted 
wastewater 

Anaerobic 
reactor 

Reactor fill ratio, OLR, influent 
and effluent pH, alkalinity, COD, 
suspended solids 

Nonlinear 
regression  0.9852  18.22  Tufaner and 

Demirci, 2020  ANN  0.9878  14.74 

MSW 
Anaerobic 
bioreactor 
landfill 

COD, HRT, NH4
+‐N, pH  ANN  0.998  0.634  The current study 

 

Table 5: Comparison of the CH4 production prediction models
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the highest methane estimates, as determined by 
the ANN, underwent reproduction, mutation, and 
crossover to form the subsequent generation. The 
optimized values for HRT, COD, NH4

+-N, and pH were 
determined as 81 days, 12680 mg/L, 1712 mg/L, and 
7.28, respectively. The maximum cumulative CH4 
production under these optimum parameters was 
found to be 61.94 L/kg dry weight.

Assessing the generalizability of the ANN
If all the influential parameters were selected 

and the ANN was properly trained, the ANN would 
have a potential to accurately predict outputs under 
different conditions. In this study, the input data for 
the ANN consisted of COD and NH4

+-N concentration, 
pH value, and HRT. These parameters were selected 
based on their known influence on the biogas 
production process. By incorporating these input 
data, the ANN was able to effectively capture and 
accommodate the influence of variations in biological 
processes on the output. The hypothesis was that 
any variation in the biological characteristics of the 
waste, the waste quality parameters (such as carbon, 
nitrogen, moisture, sulfur, etc.), laboratory conditions 
(temperature, volume, number of reactors, etc.), and 
recirculation rate might not have a substantial impact 
on accuracy of the ANN in forecasting the output. 
Since these variations affected the input data, the 
ANN accounted for their effects on the output. In this 
section, the data from four additional studies were 
utilized as inputs to the ANN. These studies were 
selected to provide a diverse range of conditions 
and inputs in order to ensure the robustness of 
the ANN model. In the first study, three types of 
bioreactors containing MSW had been employed. 
One of these bioreactors operated without leachate 
recirculation, while the others (remaining two 
bioreactors) had leachate recirculation systems. The 
leachate recirculation rate in one of the reactors was 
9 liters per day (L/day), while the other reactor had 
a recirculation rate of 21 L/day (Sponza and Ağdağ, 
2004). The simulation results obtained using ANN1 
demonstrated significant effectiveness in predicting 
the performance of the bioreactors. By incorporating 
the data from the study conducted by Sponza and 
Ağdağ (2004) into the input data of ANN1, the 
R-value and MSE for the experimental data and the 
predicted data were determined to be 0.88 and 
5.35, respectively. In the second study, the biological 

degradation of MSW had been investigated in both 
anaerobic and hybrid bioreactors (Xu et al., 2015). 
To assess the generalization ability of ANN1, only 
the anaerobic bioreactor data were employed. By 
incorporating the data from the study conducted by 
Xu et al. (2015) into the ANN1, the values of MSE and 
R-value for the observed and predicted data were 
determined as 9.06 and 0.83, respectively. Despite 
the reduction of the R-value in these two studies, 
it should be considered that any R-value exceeding 
0.8 was widely accepted as suitable for modeling the 
biological processes (Bao et al., 2023; Turkdogan-
Aydınol and Yetilmezsoy, 2010). By comparing these 
results with those presented in Table 5 and taking 
into account that the data utilized at this stage were 
completely unseen by the ANN, the performance of 
the ANN could be deemed appropriate. Additionally, 
it was important to consider other statistical indices, 
such as MSE, in conjunction with the R-value (Rahman 
et al., 2022). Considering the predicted data range, 
with the highest value of 70 and the lowest value of 
0, a MSE of 9.06 represented an acceptable level of 
accuracy. In the third and fourth studies, the MSW 
had undergone mechanical treatment followed by 
biological treatment (Di Addario and Ruggeri, 2018; 
Sormunen et al., 2008). The primary objective of 
the mechanical treatment of MSW was to separate 
different components such as organic materials 
for recycling and metals for reuse, and prepare 
the remaining waste for subsequent treatment. 
This process involved sieving and sorting methods, 
resulting in smaller particle sizes in the residual waste. 
It should be noted that when the smaller particles 
are landfilled, the initial degradation phase may be 
impacted and the leaching of organic materials and 
nitrogen from waste may be increased (Di Addario 
and Ruggeri, 2018). The mechanical properties of 
waste, including porosity, hydraulic conductivity, 
particle sizes, and surface areas, play a crucial role in 
anaerobic decomposition. The hydraulic conductivity 
of waste can directly affect the availability of water 
for microbial activity, which is essential for the 
growth and metabolism of methanogenic bacteria. 
Additionally, smaller particle sizes and larger surface 
areas provide more contact sites for microbial 
colonization and enhance the breakdown of organic 
compounds, leading to an increased methane 
production (Johnravindar et al., 2021). Reducing 
the porosity of MSW can improve mass transfer and 
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increase the rate of CH4 production (Ko et al., 2015). 
It is important to note that the ANN trained in this 
study did not consider the input parameters related 
to the mechanical characteristics of the waste, such 
as porosity, particle size, and hydraulic conductivity. 
Consequently, ANN1 did not consider the potential 
impact of these variables on the prediction of 
cumulative CH4 production from the waste. 
Therefore, the performance of ANN1 in accurately 
predicting the CH4 content was significantly reduced 
for the data from the latter two studies. In the study 
conducted by Di Addario and Ruggeri (2018), the 
R-value and MSE of ANN1 were determined as 0.28 
and 186, respectively. Similarly, in the study done by 
Sormunen et al. (2008) the R-value and MSE of ANN1 
were found to be 0.39 and 137, respectively.

CONCLUSION
This study demonstrated that the recirculation of 

leachate between fresh and degraded waste led to a 
substantial improvement in COD reduction in System 
2. Acetogenic bacteria in Reactor C contributed to a 
notable reduction in COD concentration. The COD 
removal efficiency in System 2 fluctuated between 
65% and 90%. NH4

+-N concentrations in Reactors B 
and C initially increased to maximum levels of 2650 
mg/L and 1800 mg/L, respectively. However, after 
day 42, the concentrations started to decrease. By 
day 144, both reactors reached the same NH4

+-N 
concentration of 1600 mg/L. The decrease in NH4

+-N 
was mainly due to the adsorption of degraded waste 
and assimilation by anaerobic bacteria. Throughout 
the experiment, reactor A had a CH4 content of 
below 10%, while reactors B and C showed significant 
increases. Reactor B reached 48% CH4 content on 
day 144, with its cumulative CH4 production being 
4.31 times higher compared to reactor A. Leachate 
recirculation in Reactor B accelerated the startup time, 
enhancing biogas production. Reactor C exhibited a 
notable CH4 production reaching 59 L/kg dry weight 
by day 144. The performance of the ANN models 
during the validation was exceptional, with validation 
performances of 0.716 and 0.634 achieved for ANN1 
and ANN2, respectively. The high R value obtained for 
the test data demonstrated the model’s capacity to 
understand the complex modeling process, despite 
the inherent challenges in biological systems modeling. 
The accuracy of ANN1 prediction was evaluated 
under different experimental conditions. The data 

from two previous studies supported its effectiveness 
and significant accuracy in predicting the bioreactor 
performance. However, ANN1 did not account for 
variations in mechanical characteristics of waste, 
impacting its ability to accurately predict cumulative 
CH4 production. Specifically, the ANN performance in 
predicting the CH4 content for the two studies, which 
involved mechanical treatment and smaller particle 
sizes in the waste, showed a significant decline.
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ABBREVIATIONS
% Percent
ANFIS Adaptive Neuro-Fuzzy Inference 

System
ANN Artificial Neural Network
ANN1 First type of artificial neural network
ANN2 Second type of artificial neural 

network
BOD5 Biochemical Oxygen Demand
C Carbon
CH4 Methane
cm Centimeter
cm2	 Square centimeter 
CO2 Carbon Dioxide
COD Chemical Oxygen Demand
GA Genetic Algorithm
H Hydrogen
H2SO4 Sulfuric Acid
HRT Hydraulic Retention Time
kg Kilogram
L Liter
L/day Liter per Day
L/kg Liter per Kilogram
LMFFBP Levenberg Marquardt Feed-Forward 

Back Propagation Perceptron
m Meter
m2	 Meter square
MATLAB Matrix Laboratory
mg/L Milligram per Liter
MSE Mean Squared Error
MSW Municipal Solid Waste
N Nitrogen
NH4

+-N Ammonium-Nitrogen
O Oxygen
OLR Organic Loading Rate
S Sulfur
TCD Thermal Conductivity Detector
v/v Volume per Volume
VFA Volatile Fatty Acid
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