
Global J. Environ. Sci. Manage. 10(1): 245-266, Winter 2024, Serial #37

*Corresponding Author:
Email: annas12001@mail.unpad.ac.id
Phone: +6283 8265 60209                            
ORCID: 0000-0003-0588-387X

Global Journal of Environmental Science and Management 
(GJESM)

Homepage: https://www.gjesm.net/

CASE STUDY

Modeling regional aboveground carbon stock dynamics affected by land use and 
land cover changes
A.D. Malik1,*, M.C.W. Arief2, S. Withaningsih3, P. Parikesit4

1Center for Environment and Sustainability Science, Universitas Padjadjaran, Bandung, West Java, Indonesia
2 Department of Fisheries, Faculty of Fisheries and Marine Science, Universitas Padjadjaran, Sumedang, West Java, Indonesia
3 Sustainability Science Masters Study Program, Graduate School, Universitas Padjadjaran, West Java, Indonesia
4 Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, West Java, Indonesia

BACKGROUND AND OBJECTIVES: Land use and land cover changes are affected by massive construction, 
urban expansion, and exploitative agricultural management. These pressures threaten the potential of 
aboveground carbon storage in Rancakalong District, West Java, Indonesia. In that massive construction 
and agricultural expansion are ongoing, it is critical to detect the potential changes in carbon stocks 
in the region. This study evaluated the impact of land use and land cover changes on aboveground 
carbon stock potential in Rancakalong District, West Java, Indonesia, by incorporating several ground-
based carbon inventories into geographic information systems and remote sensing approaches. The 
spatiotemporal dynamics of the aboveground carbon stocks were assessed using Integrated Valuation 
of Ecosystem Services and Tradeoffs models.
METHODS: Aboveground carbon stocks were estimated using the integrated approach of field inventory 
and geographic information systems. Land use and land cover changes were assessed from remotely 
sensed imagery data recorded in 2009 and 2021 using the maximum likelihood classification method 
in the geographic information as a collection of layers and other elements in a map 10.6 package. Tree 
height and diameter were collected within the purposively distributed plots with a size of 30 × 30 square 
meters. Vegetation biomass was assessed using an allometric equation, and aboveground carbon stock 
data were extrapolated to the landscape scale using a linear regression model of measured carbon 
stocks and the Normalized Difference Vegetation Index derived from recent satellite imagery. 
FINDINGS: Vegetated areas were predominant in 2009 and 2021. Vegetation covered 51 percent of 
the total area in 2009, increasing to 57 percent in 2021. Regarding agricultural area, mixed gardens and 
drylands decreased between 2009 and 2021. Meanwhile, paddy fields were the only agricultural land 
use to increase between 2009 and 2021. The bare land and built-up expansion related to the observed 
land clearing for the Cisumdawu Highway mainly came from the conversion of mixed gardens, paddy 
fields, and drylands. The results show that the land use and land cover changes in Rancakalong District 
have caused a reduction in aboveground carbon stocks by 11,096 tons between 2009 and 2021. The 
highest reduction in aboveground carbon stocks occurred in mixed gardens, while a slight increase 
in aboveground carbon stocks occurred in forests, shrubs, and paddy fields. The results highlight the 
contribution of mixed gardens to carbon storage as they are visually similar to forests in the structure 
and composition of vegetation.
CONCLUSION: Land use and land cover changes directly affected the aboveground carbon stock 
potential in Rancakalong District, indicated by an 11,096-ton reduction in the stocks. This shortage of 
carbon stock potential was mainly attributed to the massive reduction in mixed garden areas between 
2009 and 2021 by 12 percent, which caused a significant decrease in aboveground carbon stocks. 
The application of the Integrated Valuation of Ecosystem Services and Tradeoffs model is efficient in 
analyzing the effect of land use and land cover change on aboveground carbon stock dynamics and can 
be widely used in environmental engineering studies involving remote sensing approaches.
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INTRODUCTION
Climate change and global warming have become 

major threats to global ecosystems (Hassan and Nile, 
2021; Frimawaty et al., 2023; Arredondo Trapero 
et al., 2023). The recent increase in greenhouse gas 
emissions that has resulted from massive human social 
development and industrialization is one of the main 
causes of climate change (Javaherian  et al., 2021).  
Temperatures in places inhabited by more than one-
fifth of humanity have already risen by 1.5 degrees 
Celsius (C) over preindustrial levels in at least one 
season (Javaherian et al., 2021). Without mitigation 
efforts to reduce greenhouse gases, the global 
temperature is expected to continue to rise in the 
21st century, ranging from a median increase of 3.7°C 
to 4.8°C (IPCC, 2014). 

The primary factors causing climate change are 
thought to be carbon emissions and greenhouse 
gases, and their levels continue to meet the upper 
limit of the model scenario developed by the IPCC 
(Jagdish et al., 2013). As a consequence of landscape 
modification, land use and land cover (LULC) change 
impacts the ability of a landscape to reduce carbon 
emissions. LULC changes further impact the 
distribution of soil organic matter as an area shrinks 
over time (Zhao et al., 2018; Karbassi et al., 2015). 
Moreover, modifications in LULC exert increasing 
pressure on regulatory ecosystem services such as 
carbon sequestration (Solomon  et al., 2018). The 
benefits humans gain from ecosystems are referred 
to as “ecosystem services” (Millennium Ecosystem 
Assessment, 2005). All ecosystem services are 
needed for human survival and livelihoods 
(Solomon  et al., 2017). The regulation of gas 
concentrations that circulate between the ecosystem 
and atmosphere of the earth and have an impact on 
the world’s climate is carbon sequestration (Lee  et 
al., 2022). The dynamics of the carbon cycle are 
affected by LULC changes, which affect emission 
rates and carbon sequestration (Coutinho  et al., 
2015). The ability of terrestrial carbon pools may 
also be disturbed by these impacts, which can affect 
the accumulation of many sources of carbon (Zhao et 
al., 2018). Terrestrial ecosystems play an essential 
role in carbon sequestration. According to the FAO 
(2016), carbon sequestered in above- and 
belowground biomass is estimated at approximately 
296 gigatons (Gt) and 44% is stored in plant biomass. 
Conversely, the emission of carbon dioxide (CO2) 

resulting from vegetation biomass deterioration was 
estimated at 12.5% of the total CO2 emissions 
(Masripatin  et al., 2010). Aboveground biomass 
consists of all living things and vegetation that exists 
in terrestrial ecosystems, such as trees, shrubs, and 
herbaceous plants (Piyathilake  et al., 2022). 
According to a report from the Forest Resource 
Assessment, the world’s carbon stored in forest 
biomass was 289 Gt (Ostadhashemi et al., 2014). The 
carbon stocks in natural forests are believed to be 
one of the most vital ecosystems for combating 
anthropogenic climate change (Thom  et al., 2017). 
Forest areas have ten times greater potential for 
carbon stocks than other types of vegetation; 
however, many forests are currently being deforested 
(Masripatin et al., 2010). Changes in forest cover and 
other land use with carbon sequestration potential 
influence carbon dynamics (Dida  et al., 2021). 
Between 2005 and 2010, the carbon contained in 
the world’s forest biomass was expected to decrease 
by 0.5 Gt each year. This reduction was primarily due 
to a decrease in worldwide forest area (Forestry 
Economics and Policy Division, 2010). Likewise, 
between 2015 and 2016, it was estimated that 
forests in Indonesia experienced 0.63 million 
hectares (ha) of deforestation (KLHK, 2018). Most 
carbon emissions come from the coal energy sector, 
and this rate is predicted to increase further until 
reaching 434.96 parts per million (ppm) in 2050, 
where carbon increases that exceed 400 ppm can be 
categorized as a global phenomenon (Cahyono et al., 
2022). In this context, investigating the potential loss 
of valuable ecosystem components as a result of 
LULC change is essential (Lahiji  et al., 2020). 
Numerous studies in Indonesia have analyzed the 
potential of various ecosystems to sequester carbon, 
for example, in state forests (Darmawan et al., 2022), 
production forests (Situmorang et al., 2016), urban 
green spaces (Dewanto and Jatmiko, 2021), 
mangroves (Kusumaningtyas  et al., 2022), and 
agroforestry systems (Latifah et al., 2018). However, 
limited studies have discussed how LULC changes 
impact ecosystem services, and a spatiotemporal 
model of carbon stock dynamics has not been 
produced. The recent rapid development of 
geographic information systems (GIS) provides an 
opportunity to identify LULC changes over time and 
comprehensively detect disturbances in a particular 
ecosystem service (Zhao et al., 2019). Furthermore, 
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a spatial model provides a clearer explanation of 
how disturbance impacts ecosystem services 
(Jiang et al., 2021). The study of LULC changes and 
measurement of the aboveground carbon stock may 
vary using remote sensing and GIS. Several previous 
studies have focused on revealing the significant 
effects of LULC changes on carbon stocks using GIS 
and remote sensing approaches. A typical simulation 
model for carbon stock dynamics incorporating 
annual maps was performed to analyze the effect of 
LULC changes on vegetation biomass and carbon 
stocks (Liu  et al., 2016). The assessment of LULC 
changes and vegetated aboveground carbon stocks 
using multispectral data in remote-sensing-based 
methodology revealed a relevant decrease in 
vegetated areas (Massetti and Gil, 2020). Another 
study conducted by Piyathilake et al. (2021) used the 
GIS approach and InVEST model to predict the LULC 
type containing the largest carbon stocks on a 
regional scale. Later, the use carbon budget model, 
which focuses on the prediction of carbon dynamics 
affected by several disturbances and LULC variations, 
was performed by (Tang et al. 2022). The empirical 
model also incorporates some ecological processes 
regarding the plant species’ traits and characteristics 
and climate data. However, these studies used 
secondary data, such as available vegetation maps, 
geodatabase of vegetation stand attributes, and 
national statistics data of biomass growth to obtain 
carbon stocks. Detailed information regarding the 
combination of remote sensing and integrated field 
surveys at the regional scale remains limited. In this 
study, rather than relying only on carbon data 
sources from published studies and reports, the 
integration of a few field carbon inventory data 
points with GIS and remote sensing methods is 
expected to obtain more accurate and precise 
carbon estimation results. The normalized difference 
vegetation index (NDVI) is a metric derived from 
remotely sensed images that is commonly used in 
predicting biophysical factors, such as aboveground 
biomass and carbon (Wani  et al., 2021). Typically, 
some parametric models have been applied to 
discover the direct relationship between 
aboveground biomass and metrics/spectral values 
derived from satellite imagery (Vafaei  et al., 2018; 
Zhu and Liu, 2015). Several spatially based decision 
models for ecosystem services assessment have 

been widely applied (Bagstad  et al., 2013), one of 
which is Integrated Valuation of Ecosystem Services 
and Tradeoffs (InVEST) (Sharp et al., 2020). InVEST is a 
distinguished model that has been widely applied to 
assess global ecosystem services (Piyathilake  et al., 
2022). The advantages of this model include its low 
data requirements and ease of use (Cong et al., 2020). 
Models for regulatory ecosystem services have been 
commonly applied in InVEST, and the model has been 
used to assess carbon sequestration under multiple 
scenarios (Posner et al., 2016). The InVEST model uses 
LULC projection maps and quantitative data on 
ecosystem services (Nelson et al., 2009). The model 
needs an estimation of the carbon stocks in at least 
one of the four carbon pools for each LULC map. These 
data can be used to create a projection model of the 
amount of carbon stored in a class of land cover over 
time and predict carbon sequestration (Sharp  et al., 
2018). This study employs the aboveground biomass 
of vegetation as it is the most active carbon pool in the 
carbon cycle (Harper et al., 2018). Land deterioration 
has occurred in Sumedang Regency, West Java, 
Indonesia. According to Khaerani  et al. (2018), a 
protected forest and production forest conversion of 
7,817 ha between 2015 and 2017 violated the regional 
planning for the Sumedang Regency. In recent years, 
forest cover degradation has been affected by the 
megaproject in Sumedang Regency. They are the 
Cisumdawu Highway project, which connects 
Bandung, the capital city of West Java, with Kertajati 
International Airport, and the Jatigede Hydropower 
Plant, which is expected to generate 2 × 25 megawatts 
(MW) of electricity. As a result of this forest cover 
degradation, carbon sequestration has likely been 
significantly diminished. Rancakalong is a district in 
Sumedang Regency. Segments of the Cisumdawu 
Highway also pass through this District, resulting in 
LULC change. Since these massive constructions are 
ongoing, determining the link between LULC change 
and carbon stocks in this area is critical, as various 
LULC classes have varying effects on carbon stocks 
(Toru and Kibret, 2019). The aim of this study is to 
analyze spatial and temporal dynamics of aboveground 
carbon stocks associated with LULC change in 
Rancakalong using the InVEST model. This study was 
conducted in Rancakalong District, which is situated in 
Sumedang Regency, West Java Province, Indonesia in 
2009 and 2021.
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MATERIALS AND METHODS
Research site

Rancakalong District is located in the western part 
of Sumedang Regency 16 kilometers (km) from the 
capital of Sumedang Regency, West Java Province, 
Indonesia (Fig. 1). The mean temperature in the 
study area is 24.7°C, and the mean precipitation is 
2570 millimeters per year (mm/y) (Sampurno and 
Thoriq, 2016). The total area of Rancakalong District 
is 5574.12 ha, dominated by hills and mountainous 
landscapes, and the elevation ranges from 500 to 
1500 meters (m) above sea level (Sumedang Regency, 
2019). The geographic conditions indicated that 
large parts of the area are barely accessible. Most of 
Rancakalong’s people are working in the agricultural 
sector, reflected by the agriculture area as the major 
land use in Rancakalong, with the characteristics of 
upland agricultural systems and paddy fields reaching 
3383.77 ha or 60.71 percent (%) of the Rancakalong 
District (Sumedang Regency, 2019). The forests lie 
on the very steep slope hillside of Cibunar Mountain 
and cover 146.29 ha of the area. In recent days, the 

Rancakalong area has been exposed to environmental 
pressure from the development of the Cisumdawu 
Highway as segments of the toll road pass through 
the area and have affected massive LULC changes. 

Data collection and sampling design 
The magnitude of the data collected was at the 

Rancakalong District scale as part of the Sumedang 
Regency. The integrated approach combining the 
direct measurement of carbon stocks and spatial 
analysis was conducted to assemble the required 
primary and secondary data. The primary data of 
the carbon stocks collected by direct measurement 
of aboveground biomass of the vegetation stands 
measures the diameter at breast height (DBH) and 
height. Most of the area was difficult to access due to 
very steep slopes around the hills and mountains and 
the high rainfall that occurred during the research. 
The vegetation stands were sampled in the study area 
and quantified using a purposive sampling technique 
considering safety, climate, and topographic factors. 
The sample plot size of 30 × 30 square meters (m2) 

 
 
 

Fig. 1: Geographic location of the study area in Rancakalong District, Indonesia 
   

Fig. 1: Geographic location of the study area in Rancakalong District, Indonesia
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refers to the pixel size of medium-resolution remotely 
sensed satellite imagery (~30 m). The secondary data 
contain the global spatial distribution of crop yield 
data in tons/hectare (tons/ha) for all commodities in 
Rancakalong (rice, sweet potato, maize, groundnut, 
banana, and cassava), which can be considered 
biomass in tons/ha and tree density of all measured 
trees. The crop yield information was collected from 
the Global Agroecological Zones+ (GAEZ+) (Frolking et 
al., 2020) data on global gridded crop harvest areas, 
crop production, and crop yields. Tree density was 
obtained from the global wood density database 
(Zanne  et al., 2009). Furthermore, the secondary 
data of the multispectral image of Landsat 5 Thematic 
Mapper (TM) recorded on 3 May 2009 and Landsat 
8 Operational Land Imager (OLI) recorded on 16 
September 2021 were used as spatial data for InVEST 
modeling.

Preprocessing
Satellite imagery pre-analysis was required 

to correct the atmospheric disturbance of the 
multispectral image data. This process corrected the 
pixel value of the image data and allowed the pixel 
value to depict the true condition of the terrestrial 
ecosystem. Without this correction, the image sensor 
may have failed to absorb the object’s reflection 
of the earth due to atmospheric disturbance. 
The preprocessing step consisted of radiometric 
calibration and atmospheric correction. Before 
calibration, the satellite images were cropped to 
the area of interest. Next, the vector administrative 
boundary of Rancakalong District was selected as 
the masking area. In radiometric calibration, the 
multispectral image data, or so-called digital numbers 
(DN), were converted into the top of atmosphere 
(TOA) radiance and reflectance by rescaling the DN 
values in the metadata text file extension (MTL). This 
process is a prerequisite for DN value conversion 
into a surface reflectance value when correcting 
for atmospheric disturbance (Chavez, 1989). This 
reflectance measurement produces a vegetation 
index of the imagery data (Jaya  et al., 2022). To 
generate the TOA radiance value, the radiance 
rescaling factors of the MTL were used and included 
in Eq. 1 (Hua and Ping, 2018).
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The following stage involved converting TOA 

spectral radiance to TOA reflectance. The images in 
spectral radiance were converted to reduce the in-
between-scene variability through normalization 
for solar irradiance (Chander and Markham, 2003). 
This step is imperative to cross-calibrate all Landsat 
sensors (Li  et al., 2018). For the Landsat 5 TM, the 
spectral radiance ( ëL )  was converted to the surface 
and atmospheric reflectance using Eq. 2 (Chander 
and Markham, 2003).
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downE  = The downwelling diffuse irradiance

All preprocessing steps were run in the 
Semiautomatic Classification Plugin (SCP) integrated 
into the QGIS 3.16 software. The SCP is a free plugin 
for QGIS that facilitates satellite image conversion 
to reflectance to generate the best condition of 
the Earth’s surface by reducing the atmospheric 
condition. As the final step of preprocessing 
(atmospheric correction/surface reflectance), dark 
object subtraction 1 (DOS1) atmospheric correction 
was applied in the plugin. 

LULC classification
LULC classification was applied to both Landsat 5 

TM and Landsat 8 OLI images. This process produces 
raster data of LULC classes and later will serve as the 
data for InVEST modeling. All raster images were 
stacked or composited to produce a single raster 
and multispectral image. Since a pansharpened 
raster band is available in the multispectral image 
of Landsat 8 OLI, an image enhancement tool was 
used to sharpen the image resolution and clarify the 
image during the remote sensing process. The image 
classification process using maximum likelihood 
classification (MLC) was run in the geographic 
information as a collection of layers and other 
elements in a map.

(ArcMap) 10.6. Numbers of training samples were 
drawn on each satellite image representing the 
LULC classes (forests, mixed gardens, paddy fields, 
shrubs, built-up land, drylands, and bare land). This 
nomenclature variation of LULC classes was selected 
following guidance from the Ministry of Forestry and 
Environment of Indonesia and the Regional Planning 
Agency of Sumedang regarding the remote sensing 
method for medium-resolution satellite imagery data. 
The supervised technique identifies and classifies 
the pixel values drawn in the training sample with 
other identical pixel values. Visual interpretation of 
the satellite imagery was assisted by high-resolution 
Google Earth imagery and ground-truthing at the 
study site. The determination of selected variations 
of LULC classes was also helped by the Google Earth 
imagery and ground-truthing approach. The best 
band combination for built-up area classification is 
the natural color band combination, that is, band 
4-3-2 for Landsat 8 OLI and band 3-2-1 for Landsat 
5 TM (Liu  et al., 2018). Conversely, the false color 
band combination is the most suitable for vegetation 
mapping, namely, band 5-4-3 for Landsat 8 OLI and 
band 4-3-2 for Landsat 5 TM (Liu  et al., 2018). The 
false color band is superior because tree leaves 
have a large amount of chlorophyll, which can 
better absorb red light from the infrared spectrum 
(Zhang  et al., 2012). Later, an accuracy assessment 
was conducted to minimize LULC classification errors 
due to the sampling technique and the potential 
for misinterpretation of pixel values in the imagery 
data. The assessment employed a matrix of the error 
to identify pixel misclassification (Yesserie, 2009). 
The Kappa coefficient is an appropriate analysis 
for nominal data image classification models that 
partially rely on ground-truth data (Senseman et al., 
1995).

Vegetation index identification
A vegetation index distribution map was produced 

to extrapolate the direct biomass and carbon stock 
measurements of vegetation stands from the plot 
scale to the landscape scale. This index was also 
useful to identify the index value of the vegetation 
present in the study site. The most commonly used 
spectral vegetation index is NDVI. To identify the 
current state of vegetation in the study area, the 
multispectral image data were converted into a 
raster map containing the values of the vegetation 
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index. In this study, NDVI provided information 
about the canopy and vegetation coverage and 
depicted this information in a vegetation distribution 
map (Calderón-Contreras and Quiroz-Rosas, 2017). 
According to Marchetti  et al. (2016), NDVI patterns 
can map the physiognomy and elevation of various 
vegetation types. This process permits mapping of 
different areas covered by vegetation (e.g., forests, 
mixed gardens, shrubs, and paddy fields). In this 
study, the Landsat 8 OLI recorded on 16 September 
2021 was used to obtain the NDVI. The NDVI of the 
multispectral image is a division between the near-
infrared and red bands, which in Landsat 8 OLI is 
related to Bands 5 and 4. The NDVI used to identify 
the difference in vegetation quality was obtained 
using Eq. 5 (Rouse et al., 1974).

NIR-RedNDVI = 
NIR+Red

			�    (5)

where:
NDVI = Normalized Difference Vegetation Index
NIR = Near-infrared band (Band 5)
Red Band = Red band (Band 4)

The NDVI produces a value between −1.0 and 
1.0, where negative values represent water bodies 
or bare lands and higher positive values indicate 
dense vegetation (Calderón-Contreras and Quiroz-
Rosas, 2017). Such higher values are is due to dense 
vegetation’s capacity to absorb much of the red 
spectrum while reflecting much of the near-infrared 
(Davies et al., 2016). The higher the value of the NDVI, 
the higher the photosynthetic activity of a particular 
identified area of vegetation (Jamali et al., 2011). 

Biomass and Carbon Stock Measurement
The sampling technique considered the spatial 

distribution of each NDVI class. The sample was 
ensured to represent each class of NDVI. Deforestation 
was heavily affected by LULC changes; therefore, 
only the aboveground biomass of vegetation was 
measured. In the sample plots, the name of the 
species, DBH, and the height of the trees were 
measured. The estimation of biomass was conducted 
using Eq. 6. This allometric equation and coefficient 
are suitable for aboveground biomass estimation in 
most tropical moist regional locations, considering 
DBH, wood density (ρ), and tree height (T) as the most 
important predictive variables (Chave et al., 2005).
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 = Wood density (gr/cm3)
T = tree height (m)

The biomass carbon content was calculated by 
multiplying the biomass estimation result with a 
default value of 46% (Hairiah  et al., 2011). Carbon 
stocks obtained from field measurements were 
extrapolated to the landscape scale using correlation 
analysis. A single explanatory variable regression was 
selected to identify the correlation between NDVI 
values and the field measurement of carbon stocks 
(Batsaikhan  et al., 2020). In the regression model, 
the dependent variable (Y) was the plot-level carbon 
stock measurement result, and the independent 
variable (X) was the NDVI value distribution map. A 
scatterplot of NDVI values was produced, and the 
carbon stock was measured in all permanent plots 
to ensure that the distribution of plot carbon data 
matched the trend of the NDVI (Basalumi  et al., 
2018). The correlation analysis was performed in IBM 
SPSS Statistics 26 software. To confirm that the study 
area’s real carbon stocks could be modeled by the 
simple linear regression equation, a standard error 
of estimate (SEE) accuracy test was conducted on the 
result of the obtained carbon model and compared 
with the actual field carbon data in all permanent 
plots. The SEE analysis was calculated using Eq. 7 
(Smith, 2015).

( )2n
i ii=1

y -y
SEE = 

n - 2
∑ 		�   (7)

where:
SEE  = Standard Errors of Estimate (tons/pixel)

( )2n
i ii=1

y -y∑ = Difference value between the carbon 
model and actual field carbon stocks
n  = number of plots

The carbon stocks model was extrapolated from the 
plots to the landscape scale by the Raster Calculation 
feature in QGIS 3.6 software. This process produced 
the final carbon model distribution map in a raster 
image format. 
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Land use and land cover change effects on carbon stocks

InVEST carbon storage model
A product of the Natural Capital Project, the InVEST 

Carbon Storage and Sequestration Model is software 
for ecosystem services mapping and calculation. In 
this study, InVEST was used to model the carbon stock 
dynamics in the study site. Specifically, the results of 
the older carbon stocks spatial model were compared 
with the more recent model. InVEST carbon modeling 
requires maps of LULC classification and carbon 
stock data in tons/ha. This study uses aboveground 
biomass as the only carbon pool. The model produces 
both numeric and spatial data in a raster output for 
further GIS analysis and decision-making processes 
(Shrestha et al., 2021). The LULC raster data, which 
are necessary for the carbon storage model, were 
obtained from the LULC image classifications from 
2009 and 2021. The LULC classifications contained 
attribute tables with information on LULC classes 
(forests, mixed gardens, paddy fields, shrubs, built-
up land, dryland, and bare land). The result of 
the carbon stock estimation spatial data from the 
previous extrapolation process was converted into 
numeric values of carbon density for each LULC 
class. Carbon density values were then aggregated 
in a comma-separated value (csv) file format. All 
LULC raster images and the .csv file were integrated 
into the InVEST software to begin modeling the 
current aboveground carbon storage. The final result 

contained carbon storage distribution maps in a 
temporary instruction file format (tiff).

RESULTS AND DISCUSSION
Land use and land cover changes

As shown in Fig. 2, the classification identified LULC 
changes in the Rancakalong District. A seen in Table 1,  
the largest LULC class area in both 2009 and 2021 
was mixed gardens. In 2009, mixed gardens (31%) 
were followed by drylands (21% as the second most 
common class). Meanwhile, mixed gardens (25%) 
and paddy fields (13%) were the most common LULC 
classes in 2021. According to LULC change detection, 
the area of mixed gardens and drylands decreased 
between 2009 and 2021 by 6% and 8%, respectively. 
The areas of shrubs, forests, paddy fields, and bare 
land increased by 9%, 2%, 2%, and 2%, respectively. 
The supervised classification detected that vegetated 
land was predominant in 2009 and 2021. In this 
study, forests, mixed gardens, and shrubs were 
considered to be vegetated areas, as vegetation cover 
was predominant in each area. Vegetation covered 
51% of the total area in 2009. In 2021, the vegetated 
area covered 57% of the total area, indicating a 6% 
increase in vegetated areas. This increase was driven 
by shrubs, as this type of vegetation expanded 10% 
between 2009 and 2021.

At the LULC level, the conversions occurred at 

 
 
 

Fig. 2: Map of LULC classification in Rancakalong District in 2009 and 2021 
   

Fig. 2: Map of LULC classification in Rancakalong District in 2009 and 2021
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different rates depending on the type of LULC class 
(Table 2). For example, forests were mostly converted 
to mixed gardens (12%), followed by these areas’ 
conversion to paddy fields (3%) and shrubs (2%). 
Mixed gardens—the most common LULC class in the 
study site—experienced a 12% conversion to forests, 
followed by conversion to shrubs (13%) and paddy 
fields (11%). The estimated conversions between 
forests and mixed gardens may have been biased 
by the visual characteristics of these LULC classes 
potentially leading to misclassification. According 
to the remote sensing method, forests and mixed 
gardens are visually similar since the mixed garden 
in the study area can be considered an agroforestry 
system managed by local communities that take 
part as forest buffer areas. As agriculture is the main 
occupation of Rancakalong District’s people, the 
conversion of forests and mixed gardens to paddy 
fields was mainly attributed to these areas expanding 
to fulfill the needs of Rancakalong’s people for this 
type of agricultural system. 

The increase in forest cover can be largely 
attributed to the rise in mixed gardens because 
mature mixed gardens are visually similar to forest 
cover and are both dominated by perennial plants. 
In contrast, the mixed garden area decreased 
between 2009 and 2021. The mixed gardens were 
mostly converted into shrubs, indicating some 
abandonment of mixed gardens following plant-
clearance activities by farmers. Paddy fields were the 
only agricultural land use to become more prevalent, 
increasing from 20% to 22% between 2009 and 2021 
(Table 1). Meanwhile, the other agricultural areas, 
mixed gardens, and drylands, decreased between 
2009 and 2021. As in the nonvegetated and non-
agricultural areas, the newly built-up areas largely 
resulted from the conversion of drylands (6%) and 
paddy fields (2%) (Table 2). The largest bare land 
conversion came from paddy fields (4%), followed 
by drylands (3%) (Table 2). The bare land conversion 
was related to the observed land-clearing activities 
for the Cisumdawu Highway project, which started Table 1: Estimated area for each LULC class in 2009 and 2021 

 
 

LULC classes  2009 (ha)  2021 (ha)  2009 (%)  2021 (%)  Area change (%) 

Drylands  1150.17  712.90  21%  13%  −8% 
Forests  1134.54  1218.73  20%  22%  2% 
Mixed gardens  1736.90  1413.36  31%  25%  −6% 
Bare land  0.18  138.70  0%  2%  2% 
Built−up  342.10  286.61  6%  5%  −1% 
Paddy fields  1130.93  1245.90  20%  22%  2% 
Shrubs  57.59  536.22  1%  10%  9% 
Total  5552.41  5552.41  100%  100%   

 
   Table 2: Conversion area matrix of LULC classes between 2009 and 2021 

 

LULC 
2021 ha (%) 

Drylands  Forests  Mixed 
gardens  Bare land  Built‐up  Paddy 

fields  Shrubs 

20
09

 h
a 
(%

) 

Drylands  372.39 
(32%)  30.13 (3%)  149.87 

(13%) 
35.78 
(3%) 

65.29 
(6%) 

315.09       
(−27%) 

181.61 
(16%) 

Forests  8.7            
(−1%) 

928.50 
(82%) 

134.10 
(12%) 

2.76 
(0.24%) 

0.40 
(0.03%) 

38.38        
(−3%) 

21.70 
(2%) 

Mixed gardens  98.88          
(−6%) 

205.20 
(12%) 

977.72 
(56%) 

31.18 
(1.8%) 

6.67 
(0.38%) 

198.81       
(−11%) 

218.45 
(13%) 

Bare land  0.05           
(−29%)  0  0  0.03 

(17%)  0  0.09          
(−52%)  0 

Built‐up   64.95          
(−19%) 

0.89 
(0.26%) 

4.12 
(−1%) 

25.21 
(7%) 

196.09 
(57%) 

46.86        
(−14%) 

3.98       
(−1%) 

Paddy fields  162.38 
(14%)  51.90 (5%)  122.26 

(11%) 
42.58 
(4%) 

17.88 
(2%) 

641.11       
(−57%) 

92.82 
(8%) 

Shrubs  5.54           
(−10%) 

2.11          
(−4%)  25.30 (44%)  1.15 (2%)  0.29  

(−1%) 
5.55          

(−10%) 
17.65 
(31%) 

 
   

Table 1: Estimated area for each LULC class in 2009 and 2021

Table 2: Conversion area matrix of LULC classes between 2009 and 2021
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in 2013. According to Thonfeld  et al. (2020), the 
change in forest cover may have minor impacts on 
biodiversity and ecosystem services compared to the 
stronger effects from the conversion of natural or 
non-agricultural landscapes such as forests, shrubs, 
and mixed gardens to agricultural and nonvegetated 
land uses (e.g., drylands, paddy fields, built-up areas, 
and bare lands).

Vegetation index in the study area
The NDVI map in this study ranged from 0.0796807 

to 0.880033 (Fig. 3). Higher NDVI values were 
distributed in the northwest compared to other parts 
of the Rancakalong District because there was an 
undisturbed forest in this area. The high NDVI value 
was indicative that the green biomass was mainly 
distributed in the northwest area (Bosino et al., 2019). 
Conversely, the lowest NDVI was distributed in the 
south, which contained the majority of built-up areas 
and bare lands. This situation was mainly attributed 

to the land-clearing process for the construction 
of the Cisumdawu Highway, which passes through 
Rancakalong District. According to Suharyanto et al. 
(2021), man-made materials can strongly reflect solar 
radiation, resulting in a massive reduction in NDVI. 
High NDVI values, which indicate the presence of 
dense vegetation, were evident in forest areas and 
some mixed garden areas. Although some areas were 
considered bare lands, the absence of a negative value 
indicates there were still vegetated parts of these 
areas. This evidence of vegetation might be related 
to replanting activities and succession progress in 
abandoned areas following land clearing. In turn, 
NDVI can provide insight and predict vegetation 
recovery after some disturbance events (Saito  et 
al., 2022). Moderate vegetation cover (indicated in 
yellow) was largely located in some nonperennial 
plant-based agricultural lands, such as paddy fields 
and drylands. The NDVI value distribution in the 
study site can superficially predict the amount of 

 
 
 

Fig. 3: Map of NDVI distribution in Rancakalong District 
   

Fig. 3: Map of NDVI distribution in Rancakalong District
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vegetation biomass (Astsatryan  et al., 2015), which 
was useful in extrapolating the aboveground biomass 
and carbon content to a landscape scale.

Extrapolation of field carbon inventory data to the 
landscape scale

The aboveground carbon stock estimation model 
was built using correlation analysis. A simple linear 
regression analysis was carried out to identify the 
degree of correlation between NDVI values and 
the plot-level result of carbon stocks. As shown 
in Fig. 4, the regression model revealed a positive 
relationship between aboveground carbon stocks 
in the field and NDVI values. The scatterplot shows 
a positive trend: the higher the NDVI value, the 
higher the aboveground carbon stocks in the study 
site. A determination value (R2) of 0.7948 shows a 
significant correlation between field measurements 
of aboveground carbon stocks and NDVI values. 

The result shows that approximately 79% of 
aboveground carbon stocks in the study area can be 
determined by NDVI values in this regression model, 
while 21% of aboveground carbon stocks were 
determined by other factors. This relatively strong 
determination value suggests that the regression 
model can effectively extrapolate aboveground 
carbon stocks to the landscape scale. To demonstrate 
this, an accuracy test was conducted comparing the 
aboveground carbon stocks from the model and 
data from the field measurements in all permanent 
plots. The SEE test resulted in an estimated error of 
0.445195549 tons/pixel. The relatively low estimated 
error suggests that the simple linear regression is 
the optimal model for aboveground carbon stock 
estimation using NDVI as the vegetation index in the 
study area. 

The results of the aboveground carbon stock 
extrapolation and crop yield data obtained from 

 
 
 

Fig. 4: Scatterplot of NDVI and aboveground carbon stocks in a linear regression model 
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Fig. 4: Scatterplot of NDVI and aboveground carbon stocks in a linear regression model
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GAEZ+ were aggregated and assigned to each LULC 
class. The aboveground biomass value for built-up 
and bare land areas was set at zero because an 
extremely low vegetation cover can be neglected 
when generating an optimal carbon stock model. 
This decision followed the assumption that 
those LULC classes did not have any potential 
aboveground carbon content. An aboveground 
carbon pool tabulation for each LULC class is 
presented in Table 3.

Spatial distribution of carbon stocks
The InVEST carbon storage and sequestration 

model generated a raster representing the spatial 
distribution of carbon stocks in the research 
area (Fig. 5). Between 2009 and 2021, the spatial 
distribution of aboveground carbon stocks in 
Rancakalong District became less varied. The highest 
aboveground carbon stock value in Rancakalong 

District was 16.97 tons, which was located in the 
dense vegetation area. Carbon stock values were 
generally highest in the western and northeastern 
regions, where the climate and topographic 
conditions were favorable for the growth of the 
forest. These areas were considered part of a 
mountain range in the study area. Meanwhile, 
the lowest aboveground carbon stock was 0, as it 
was assumed that bare land and built-up land did 
not contain aboveground carbon stock potential 
in the long term. The lower carbon stock values 
were mainly distributed in the southern region 
where drylands and other land uses that had scant 
carbon stock potential predominated. In particular, 
the drylands were mainly dominated by upland 
commodity cultivation with no vegetation stands. 
As a result, there was less vegetation coverage and 
relatively low carbon stocks. The spatial distribution 
of carbon stocks in the study area was related to 

Table 3: Carbon pool values (tons/ha/y) for each LULC class in the study site 
 

Code  LULC class name  C‐above 
1  Drylands  30.90717857 
2  Forests 56.93176429 
3  Mixed gardens  123.9699638 
4  Bare land  0 
5  Built‐up  0 
6  Paddy fields  3.5290878 
7  Shrubs 80.03822364 

 

Table 3: Carbon pool values (tons/ha/y) for each LULC class in the study site

 
 
 

Fig. 5: Distribution of estimated aboveground carbon stocks in 2009 and 2021 
   

Fig. 5: Distribution of estimated aboveground carbon stocks in 2009 and 2021
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the LULC class distribution. The area dominated by 
dense forest and tree-based agricultural landscapes 
contained more carbon stocks than the region 
dominated by undergrowth vegetation-based 
agriculture and other unused lands, such as the bare 
lands resulting from land-clearing activities. Between 
2009 and 2021, there was a significant decrease in 
aboveground carbon stocks in the southern areas 
of Rancakalong District. This reduction is due to 
widespread conversion of mixed garden locations to 
built-up and bare land areas. In northeastern areas, 
the increase in upland agricultural LULC classes 
resulted in a reduction of vegetation coverage in 
tree-based agricultural LULC classes. This reduction 
led to a slight decrease in aboveground carbon 
stocks in this area. The major causes of vegetation 
cover reduction were mainly attributed to the 
conversion of forests and mixed gardens (as the 
most vegetated LULC classes) to paddy fields. The 
expansion of paddy fields at the expense of forests 
and mixed gardens might be driven by population 
growth coupled with an increase in the requirement 
for paddy field cultivation as subsistence. Another 
cause for this vegetation cover reduction might be 
related to the abandonment of mixed garden areas 
after harvesting perennials, resulting in the areas 
being converted to shrublands.

The effect of land use and land cover changes on 
carbon stocks

The spatial model of aboveground carbon stocks 
generated by InVEST shows that in 2009, the total 
stock of aboveground carbon in Rancakalong 
District was 324,821 tons. In comparison, the total 
stock of aboveground carbon in 2021 was 313,725 
tons. The aboveground carbon stock potential 
varied among all LULC classes. In 2009, the highest 
aboveground carbon stocks were from mixed 
gardens, which had a total carbon stock of 64%. This 
carbon stock level was followed by forest (20%) and 
other agricultural LULC classes, namely, drylands 
(12%) and paddy fields (2%) (Fig. 6). In 2021, the 
highest aboveground carbon stocks were also in 
mixed gardens, which contributed 52%. This level 
was followed by forests (22%), shrubs (15%), and 
drylands (7%) (Fig. 6). According to the numeric 
statistics model generated by InVEST, there was 
a decrease in aboveground carbon density in the 
study area by 11,096 tons between 2009 and 2021. 
A significant decrease occurred in the mixed-garden 
LULC class. The number of aboveground carbon 
stocks in mixed gardens decreased from 64% to 
52%. A decrease in aboveground carbon density 
also occurred in drylands, with a reduction from 
12% to 7%. Conversely, there was an increase in 
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aboveground carbon stocks in forests (20%–22%), 
shrubs (2%–15%), and paddy fields (2%–4%) (Fig. 6).

The aboveground carbon stocks of vegetated 
areas were greater than the potential carbon 
stocks of other LULC classes. Forests and mixed 
gardens were considered to be vegetated areas 
because vegetation stand coverage was dominant 
in both classes. As shown in Fig. 6, the combined 
aboveground carbon stocks in forests and mixed 
gardens were significantly higher than those in 
other LULC classes (84% in 2009 and 74% in 2021). 
Forest aboveground carbon density was relatively 
higher than that in agricultural areas. As presented 
in Fig. 6, in both 2009 and 2021, forests contributed 
more carbon storage (20% and 22%, respectively) 
than agricultural areas, such as drylands (14%) and 
paddy fields (11%), respectively. However, mixed 
gardens were the only exception. As agricultural 
areas, mixed gardens have significantly higher 
aboveground carbon stock densities than forests. 
For both 2009 and 2021, mixed gardens contributed 
more to aboveground carbon stocks than forests, 
with a comparison of 64% to 20% in 2009 and 52% 
to 22% in 2021. This advantage is because the total 
area of the mixed garden was larger than the forest 
area, as shown in Table 1. In 2009, mixed gardens 
were the largest LULC class, with an area of 1736.90 
ha, compared to forests, which had a total area 
of 1134.54 ha. Although the forest area increased 
to 1218.73 ha in 2021, the total area of the mixed 
gardens was still the largest in the study site, with 
1413.36 ha. 

Hairiah et al. (2011) stated that the aboveground 
carbon stock potential of forests is relatively higher 
than that of any other vegetated land cover. However, 
in this study area, the aboveground carbon stocks in 
mixed gardens were higher than stocks in forests. 
This preponderance is associated with the structure 
and composition of the tree-based farming system. 
The case study in Rancakalong District, Sumedang, 
Indonesia shows that different LULC activities lead to 
variability in aboveground carbon storage potential 
within all LULC classes in a landscape with a mix of 
agriculture and forest. 

In the study area, more vegetated LULC classes 
had increased aboveground carbon stock potential 
compared to less vegetated LULC classes, although 
less vegetated LULC classes covered a larger area. In 
comparison to open agricultural areas, shrubs, built-

up areas, and bare land, dense forests have higher 
aboveground carbon stocks. A study conducted 
by Piyathilake  et al. (2022) revealed that carbon 
storage in natural forests was significantly higher 
than that in agricultural LULC classes, although 
the area of forest cover was much lower than that 
in the other LULC classes combined. Additionally, 
a sparse forest was shown to have more potential 
for carbon storage than agricultural land (Bera  et 
al., 2022). Carbon storage and sequestration were 
also positively correlated with the degree of green 
density of vegetation growth, and a dense forest 
had the greenest density (Chacko  et al., 2018). 
Confirming these findings, the highest number of 
aboveground carbon stocks in Rancakalong District 
was located in the LULC classes with the highest 
density of vegetation cover. However, in the study 
site, mixed gardens were the largest contributor to 
carbon stocks, not forests. Mixed-gardens, which 
are a tree-based agricultural system, contained 
the highest number of carbon stocks, even though 
these stocks were greatly depleted between 2009 
and 2021. The percentage of carbon stored in mixed 
gardens decreased from 64% to 52%, mainly due to a 
reduction in this LULC class area from 1736.90 ha to 
1413.36 ha between 2009 and 2021. However, the 
carbon density data for mixed gardens may fluctuate 
concerning the influence of carbon deposition 
during the harvesting time of vegetation stands. 
This may result in uncertainty about the change in 
aboveground carbon stocks over time (Wang et al., 
2022). Furthermore, the carbon sequestration and 
carbon storage potentials of agricultural areas were 
probably underestimated, as the carbon sinks were 
potentially offset during harvesting time (Paquit 
and Mindana, 2017). The fact that mixed gardens 
had a higher carbon storage potential than forests 
was related to the structure and composition of the 
vegetation in this tree-based agricultural system. 
Mixed gardens, which are generally located on 
hillslopes of Rancakalong District, are agroforestry 
systems. They are a common agroforestry system 
in West Java, Indonesia, and are known locally 
as talun or kebon tatangkalan (Parikesit  et al., 
2005). In the study area, this type of agroforestry 
comprises bamboo species (Gigantochloa atter, 
Schizostachyum brachycladum, Dendrocalamus 
asper), fruit trees (Durio zibethinus, Artocarpus 
heterophyllus, Persea americana), and timber trees 
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(Swietenia macrophylla, Maesopsis eminii, and 
Tectona grandis). These trees are cultivated with a 
mixture of aromatics and rhizomes, such as clover, 
coffee, ginger, and cardamom. The talun gradually 
evolved from a mixture of annual crops and tree 
seedlings. The field was frequently abandoned after 
the annuals were harvested, after which perennials 
dominated the agricultural area (Christanty  et 
al., 1986). During the abandonment phase, the 
perennials continually grew and became mature. 
As the perennials dominated, the agricultural 
area resembled secondary forest fallow and was 
essentially a man-made forest (Soemarwoto, 1984). 
The talun consisted of a mixture of perennial trees 
with a multilayered canopy as a key characteristic 
of this traditional agroforestry system (Soemarwoto, 
1984). The findings on the carbon stock potential 
of this tree-based talun agricultural system 
corroborated a previous study on aboveground 
carbon stocks in Rancakalong revealing that the 
coffee-based agroforestry system had higher 
carbon storage potential than secondary forests. 
This greater potential was due to the dominance of 
sparse vegetation with a smaller diameter in some 
of the secondary forests (Luth and Setiyono, 2019). 
The result is in line with findings by Natalia  et al. 
(2016), who stated that the basal area of trees 
is strongly correlated with total carbon stocks in 
natural forests and agroforestry. This study found 
that the change in aboveground carbon stocks 
was mainly attributed to LULC change. There was 
a decrease in total aboveground carbon stocks by 
11,096 tons between 2009 and 2021. This carbon 
storage reduction was mainly related to urban 
expansion in Rancakalong District. The construction 
of the Cisumdawu Highway, which started in 2013, 
was at the expense of vegetated LULC classes. 
This construction might have contributed to the 
reduction in aboveground carbon stocks in the study 
area. Data from 2021 show that the construction 
of the highway resulted in a significant increase in 
bare land cover as a result of LULC conversion from 
tree-based agroforestry and other agricultural land 
use classes. A 138.70-ha increase in bare land in 
2021 was due to the change in LULC classes with 
larger carbon inventories, such as mixed gardens, 
paddy fields, and drylands. This change reduced 
the total number of aboveground carbon stocks in 
the Rancakalong District. A study conducted in the 

Silang-Santa Rosa Watershed in the Philippines also 
showed that the continuous expansion of urban 
areas resulted in a decrease in the total number 
of carbon stocks (Dida  et al., 2021). Similarly, the 
rapid increase in built-up land because of farmland 
conversion was linked to a decline in carbon storage 
capability in northwestern China (Liang et al., 2017). 
The reduction in aboveground carbon stocks was 
also related to the conversion of forest cover and 
other vegetated LULC classes into croplands. The 
findings of Pellikka  et al. (2018) in Afromontane 
in Kenya showed that the deterioration of forest 
cover and shrublands directly caused a reduction 
in carbon sequestration. In this study, the reduction 
in aboveground carbon stocks in the vegetated 
area generally resulted from the abandonment 
of some mixed gardens after the mature trees 
were harvested. This process led to the massive 
conversion of mixed gardens to shrublands between 
2009 and 2021, which contain lower aboveground 
carbon stock potential. As a result, during the fallow 
period, there were only shrubs and undergrowth 
vegetation cover. Developing a spatial distribution of 
aboveground carbon storage within different LULC 
classes provides information about the potential 
of different LULC classes in carbon storage and 
sequestration. The spatial dynamics of aboveground 
carbon stocks reveal how aboveground carbon stocks 
fluctuate over time within different LULC classes as a 
result of anthropogenic interventions such as urban 
expansion and agricultural management. Carbon 
stocks in other carbon pools (belowground biomass, 
soil, litter, and necromass) must be further studied, 
including the use of higher resolution remote 
sensing data and enhancing the sample size at the 
plot level to comprehensively map the dynamics of 
carbon storage and carbon stock potential in the 
research area across a variety of land uses. As this 
study only relies on business-as-usual LULC trends, 
it is essential to develop various LULC change 
scenarios. The results of carbon stock estimation 
and modeling using InVEST should be considered in 
decision-making processes related to environmental 
management and regional development plans 
(spatial plans). These data could be used as a basis 
for a carbon credit scheme to protect vegetated 
areas and combat climate change. 

Tree-based agricultural systems (mixed gardens) 
have shown significant potential in carbon storage. 
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Therefore, this LULC class needs appropriate 
management strategies to enhance carbon storage 
potential while simultaneously reducing carbon 
emissions. Conservative farming practices in the 
form of mixed gardens should be enhanced to 
boost subsistence farming without undermining the 
potential of this agricultural landscape to contribute 
to carbon sequestration and climate change 
mitigation.

CONCLUSION
This study emphasizes the correlation between 

LULC changes and aboveground carbon stocks. 
Furthermore, this work examines how LULC 
conversions such as urban expansion and 
agricultural management put direct pressure on 
carbon storage potential in different LULC classes. 
Massive construction and agricultural expansion 
are still occurring in the study area; therefore, it is 
critical to detect the carbon stock levels affected 
by LULC changes. The present study attempts 
to incorporate a few ground-based inventories 
of carbon stocks into GIS and remote sensing 
approaches and integrates the inventory data with 
the InVEST spatial carbon dynamics model. The 
results of supervised classification on remotely 
sensed satellite images showed that vegetated land 
was predominant in 2009 and 2021. Vegetation 
covered 51% of the total area in 2009 and increased 
by 6% in 2021, resulting in 57% of vegetation 
area coverage. Regarding agricultural area, mixed 
gardens and drylands decreased between 2009 
and 2021 by 6% and 8%, respectively. Meanwhile, 
paddy fields were the only agricultural land use to 
increase by 2% between 2009 and 2021. The bare 
land and built-up expansion related to the observed 
land clearing for the Cisumdawu Highway mainly 
came from the conversion of mixed gardens, paddy 
fields, and drylands. This study has demonstrated 
that LULC changes in the Rancakalong District have 
caused a reduction in aboveground carbon stocks 
by 11,096 tons between 2009 and 2021. Based 
on the results of the InVEST spatial and statistical 
models, a reduction in aboveground carbon stocks 
occurred in the mixed gardens and drylands, with 
the highest reduction occurring in mixed gardens. 
Indeed, the number of aboveground carbon stocks 
in mixed gardens declined from 64% to 52%. In 
those mixed gardens were the most common LULC 

class in the study area in both 2009 and 2021, the 
massive reduction in this agricultural area caused a 
significant decrease in aboveground carbon stocks, 
although a slight increase in aboveground carbon 
stocks occurred in forests, shrubs, and paddy fields. 
This shortage of carbon stock potential was mainly 
attributed to the abandonment of this tree-based 
agricultural system after harvesting and led to the 
massive conversion of mixed gardens to shrublands, 
which contain lower aboveground carbon stock 
potential. The construction of the Cisumdawu 
Highway, which started in 2013, was at the expense 
of vegetated LULC classes. This development might 
have contributed to the reduction in aboveground 
carbon stocks in the study area. The results of 
remotely sensed data from 2021 show that the 
construction of the highway resulted in a significant 
increase in bare land cover as a result of LULC 
conversion from tree-based agroforestry and other 
agricultural land use classes. A 138.70-ha increase 
in bare land in 2021 was due to the conversion of 
LULC classes to those with larger carbon stocks, 
particularly mixed gardens. In the future, it is crucial 
to conserve this bioproduction system with long-
term protection mechanisms as this tree-based 
agricultural system (mixed gardens) showed great 
potential in aboveground carbon storage. The model 
should be considered in decision-making processes 
related to environmental management and regional 
development plans (spatial plans). Further studies 
may consider alternative scenarios in LULC changes. 

AUTHOR CONTRIBUTIONS
A.D. Malik performed the study conceptualization, 

literature review, data collection, analysis and 
interpretation of results, spatial data preparation, and 
draft manuscript preparation. M.C.W. Arief performed 
the interpretation of results, spatial data preparation, 
and draft manuscript preparation. S. Withaningsih 
performed the draft manuscript preparation and 
manuscript editing. Parikesit helped in manuscript text 
preparation and manuscript text evaluation.

ACKNOWLEDGEMENT
The research was funded by the Ministry of 

Research and Higher Education (DIKTI) of Indonesia 
in the research Grant of ‘Penelitian Dasar Unggulan 
Perguruan Tinggi (PDUPT)’ [Grant number 2393/
UN6.3.1/PT.00/2022] and Universitas Padjadjaran 



261

Global J. Environ. Sci. Manage., 10(1): 245-266, Winter 2024

in the internal research Grant of ‘Hibah Riset 
Universitas Padjadjaran 2023’ [Grant number 1549/
UN6.3.1/PT.00/2023]. The authors also thank the 
E-Asia Joint Research Program (JRP) ITMoB for 
supporting this study. 

CONFLICT OF INTEREST
The author declares that there is no conflict of 

interest regarding the publication of this manuscript. 
In addition, ethical issues, including plagiarism, 
informed consent, misconduct, data fabrication 
and/or falsification, double publication and/or 
submission, and redundancy, have been completely 
observed by the authors.

OPEN ACCESS
©2024 The author(s). This article is licensed under 

a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, 
distribution, and reproduction in any medium or 
format, as long as you give appropriate credit to 
the original author(s) and the source, provide a 
link to the Creative Commons license, and indicate 
if changes were made. The images or other third-
party material in this article are included in the 
article’s Creative Commons license, unless indicated 
otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons 
license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, 
you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit: 
http://creativecommons.org/licenses/by/4.0/

PUBLISHER’S NOTE
GJESM Publisher remains neutral with regard 

to jurisdictional claims in published maps and 
institutional afflictions.

ABBREVIATIONS
% Percent

20 
 

and/or falsification, double publication and/or submission, and redundancy, have been completely 
observed by the authors. 
 
OPEN ACCESS 
©2024 The author(s). This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution, and reproduction in any medium or 
format, as long as you give appropriate credit to the original author(s) and the source, provide a link 
to the Creative Commons license, and indicate if changes were made. The images or other third-party 
material in this article are included in the article’s Creative Commons license, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons 
license and your intended use is not permitted by statutory regulation or exceeds the permitted use, 
you will need to obtain permission directly from the copyright holder. To view a copy of this license, 
visit: http://creativecommons.org/licenses/by/4.0/ 
 
PUBLISHER’S NOTE 
GJESM Publisher remains neutral with regard to jurisdictional claims in published maps and 
institutional afflictions. 
 
ABBREVIATIONS 

% Percent 
Ɵs Angle of the sun's zenith in degrees 
ρ Wood density  
ρλ' Top of atmosphere reflectance 
ρp Planetary reflectance 
ρλ Surface reflectance 
π Phi 
% Percent 
AL The metadata's additive rescaling factor 
Aρ Additive rescaling factor from the metadata for each band 
AGB Total aboveground biomass 
ArcMap Geographic information as a collection of layers and other elements in a map 
C Celsius 
CO2 Carbondioxide 
csv Comma separated value 
d The astronomic distance between earth and sun 
DBH Diameter at breast height 
DN Digital numbers 
DOS1 Dark object subtraction 1 
Edown The downwelling diffuse irradiance 
ESUNλ The mean value of solar exo-atmospheric irradiances 
GIS Geographic information systems 
gr/cm3 Gram per cubic centimeter 
GAEZ+ Global agro-ecological zones’ + 
Gt Gigatons 
ha Hectares 
InVEST Integrated valuation of ecosystem services and tradeoffs 
IPCC Intergovernmental Panel on Climate Change 
km Kilometers 
Lλ Top of atmosphere spectral radiance 

Angle of the sun’s zenith in degrees

20 
 

and/or falsification, double publication and/or submission, and redundancy, have been completely 
observed by the authors. 
 
OPEN ACCESS 
©2024 The author(s). This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution, and reproduction in any medium or 
format, as long as you give appropriate credit to the original author(s) and the source, provide a link 
to the Creative Commons license, and indicate if changes were made. The images or other third-party 
material in this article are included in the article’s Creative Commons license, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons 
license and your intended use is not permitted by statutory regulation or exceeds the permitted use, 
you will need to obtain permission directly from the copyright holder. To view a copy of this license, 
visit: http://creativecommons.org/licenses/by/4.0/ 
 
PUBLISHER’S NOTE 
GJESM Publisher remains neutral with regard to jurisdictional claims in published maps and 
institutional afflictions. 
 
ABBREVIATIONS 

% Percent 
Ɵs Angle of the sun's zenith in degrees 
ρ Wood density  
ρλ' Top of atmosphere reflectance 
ρp Planetary reflectance 
ρλ Surface reflectance 
π Phi 
% Percent 
AL The metadata's additive rescaling factor 
Aρ Additive rescaling factor from the metadata for each band 
AGB Total aboveground biomass 
ArcMap Geographic information as a collection of layers and other elements in a map 
C Celsius 
CO2 Carbondioxide 
csv Comma separated value 
d The astronomic distance between earth and sun 
DBH Diameter at breast height 
DN Digital numbers 
DOS1 Dark object subtraction 1 
Edown The downwelling diffuse irradiance 
ESUNλ The mean value of solar exo-atmospheric irradiances 
GIS Geographic information systems 
gr/cm3 Gram per cubic centimeter 
GAEZ+ Global agro-ecological zones’ + 
Gt Gigatons 
ha Hectares 
InVEST Integrated valuation of ecosystem services and tradeoffs 
IPCC Intergovernmental Panel on Climate Change 
km Kilometers 
Lλ Top of atmosphere spectral radiance 

Wood density	

20 
 

and/or falsification, double publication and/or submission, and redundancy, have been completely 
observed by the authors. 
 
OPEN ACCESS 
©2024 The author(s). This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution, and reproduction in any medium or 
format, as long as you give appropriate credit to the original author(s) and the source, provide a link 
to the Creative Commons license, and indicate if changes were made. The images or other third-party 
material in this article are included in the article’s Creative Commons license, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons 
license and your intended use is not permitted by statutory regulation or exceeds the permitted use, 
you will need to obtain permission directly from the copyright holder. To view a copy of this license, 
visit: http://creativecommons.org/licenses/by/4.0/ 
 
PUBLISHER’S NOTE 
GJESM Publisher remains neutral with regard to jurisdictional claims in published maps and 
institutional afflictions. 
 
ABBREVIATIONS 

% Percent 
Ɵs Angle of the sun's zenith in degrees 
ρ Wood density  
ρλ' Top of atmosphere reflectance 
ρp Planetary reflectance 
ρλ Surface reflectance 
π Phi 
% Percent 
AL The metadata's additive rescaling factor 
Aρ Additive rescaling factor from the metadata for each band 
AGB Total aboveground biomass 
ArcMap Geographic information as a collection of layers and other elements in a map 
C Celsius 
CO2 Carbondioxide 
csv Comma separated value 
d The astronomic distance between earth and sun 
DBH Diameter at breast height 
DN Digital numbers 
DOS1 Dark object subtraction 1 
Edown The downwelling diffuse irradiance 
ESUNλ The mean value of solar exo-atmospheric irradiances 
GIS Geographic information systems 
gr/cm3 Gram per cubic centimeter 
GAEZ+ Global agro-ecological zones’ + 
Gt Gigatons 
ha Hectares 
InVEST Integrated valuation of ecosystem services and tradeoffs 
IPCC Intergovernmental Panel on Climate Change 
km Kilometers 
Lλ Top of atmosphere spectral radiance 

Top of atmosphere reflectance

20 
 

and/or falsification, double publication and/or submission, and redundancy, have been completely 
observed by the authors. 
 
OPEN ACCESS 
©2024 The author(s). This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution, and reproduction in any medium or 
format, as long as you give appropriate credit to the original author(s) and the source, provide a link 
to the Creative Commons license, and indicate if changes were made. The images or other third-party 
material in this article are included in the article’s Creative Commons license, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons 
license and your intended use is not permitted by statutory regulation or exceeds the permitted use, 
you will need to obtain permission directly from the copyright holder. To view a copy of this license, 
visit: http://creativecommons.org/licenses/by/4.0/ 
 
PUBLISHER’S NOTE 
GJESM Publisher remains neutral with regard to jurisdictional claims in published maps and 
institutional afflictions. 
 
ABBREVIATIONS 

% Percent 
Ɵs Angle of the sun's zenith in degrees 
ρ Wood density  
ρλ' Top of atmosphere reflectance 
ρp Planetary reflectance 
ρλ Surface reflectance 
π Phi 
% Percent 
AL The metadata's additive rescaling factor 
Aρ Additive rescaling factor from the metadata for each band 
AGB Total aboveground biomass 
ArcMap Geographic information as a collection of layers and other elements in a map 
C Celsius 
CO2 Carbondioxide 
csv Comma separated value 
d The astronomic distance between earth and sun 
DBH Diameter at breast height 
DN Digital numbers 
DOS1 Dark object subtraction 1 
Edown The downwelling diffuse irradiance 
ESUNλ The mean value of solar exo-atmospheric irradiances 
GIS Geographic information systems 
gr/cm3 Gram per cubic centimeter 
GAEZ+ Global agro-ecological zones’ + 
Gt Gigatons 
ha Hectares 
InVEST Integrated valuation of ecosystem services and tradeoffs 
IPCC Intergovernmental Panel on Climate Change 
km Kilometers 
Lλ Top of atmosphere spectral radiance 

Planetary reflectance

20 
 

and/or falsification, double publication and/or submission, and redundancy, have been completely 
observed by the authors. 
 
OPEN ACCESS 
©2024 The author(s). This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution, and reproduction in any medium or 
format, as long as you give appropriate credit to the original author(s) and the source, provide a link 
to the Creative Commons license, and indicate if changes were made. The images or other third-party 
material in this article are included in the article’s Creative Commons license, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons 
license and your intended use is not permitted by statutory regulation or exceeds the permitted use, 
you will need to obtain permission directly from the copyright holder. To view a copy of this license, 
visit: http://creativecommons.org/licenses/by/4.0/ 
 
PUBLISHER’S NOTE 
GJESM Publisher remains neutral with regard to jurisdictional claims in published maps and 
institutional afflictions. 
 
ABBREVIATIONS 

% Percent 
Ɵs Angle of the sun's zenith in degrees 
ρ Wood density  
ρλ' Top of atmosphere reflectance 
ρp Planetary reflectance 
ρλ Surface reflectance 
π Phi 
% Percent 
AL The metadata's additive rescaling factor 
Aρ Additive rescaling factor from the metadata for each band 
AGB Total aboveground biomass 
ArcMap Geographic information as a collection of layers and other elements in a map 
C Celsius 
CO2 Carbondioxide 
csv Comma separated value 
d The astronomic distance between earth and sun 
DBH Diameter at breast height 
DN Digital numbers 
DOS1 Dark object subtraction 1 
Edown The downwelling diffuse irradiance 
ESUNλ The mean value of solar exo-atmospheric irradiances 
GIS Geographic information systems 
gr/cm3 Gram per cubic centimeter 
GAEZ+ Global agro-ecological zones’ + 
Gt Gigatons 
ha Hectares 
InVEST Integrated valuation of ecosystem services and tradeoffs 
IPCC Intergovernmental Panel on Climate Change 
km Kilometers 
Lλ Top of atmosphere spectral radiance 

Surface reflectance

20 
 

and/or falsification, double publication and/or submission, and redundancy, have been completely 
observed by the authors. 
 
OPEN ACCESS 
©2024 The author(s). This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution, and reproduction in any medium or 
format, as long as you give appropriate credit to the original author(s) and the source, provide a link 
to the Creative Commons license, and indicate if changes were made. The images or other third-party 
material in this article are included in the article’s Creative Commons license, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons 
license and your intended use is not permitted by statutory regulation or exceeds the permitted use, 
you will need to obtain permission directly from the copyright holder. To view a copy of this license, 
visit: http://creativecommons.org/licenses/by/4.0/ 
 
PUBLISHER’S NOTE 
GJESM Publisher remains neutral with regard to jurisdictional claims in published maps and 
institutional afflictions. 
 
ABBREVIATIONS 

% Percent 
Ɵs Angle of the sun's zenith in degrees 
ρ Wood density  
ρλ' Top of atmosphere reflectance 
ρp Planetary reflectance 
ρλ Surface reflectance 
π Phi 
% Percent 
AL The metadata's additive rescaling factor 
Aρ Additive rescaling factor from the metadata for each band 
AGB Total aboveground biomass 
ArcMap Geographic information as a collection of layers and other elements in a map 
C Celsius 
CO2 Carbondioxide 
csv Comma separated value 
d The astronomic distance between earth and sun 
DBH Diameter at breast height 
DN Digital numbers 
DOS1 Dark object subtraction 1 
Edown The downwelling diffuse irradiance 
ESUNλ The mean value of solar exo-atmospheric irradiances 
GIS Geographic information systems 
gr/cm3 Gram per cubic centimeter 
GAEZ+ Global agro-ecological zones’ + 
Gt Gigatons 
ha Hectares 
InVEST Integrated valuation of ecosystem services and tradeoffs 
IPCC Intergovernmental Panel on Climate Change 
km Kilometers 
Lλ Top of atmosphere spectral radiance 

Phi

% Percent

LA
The metadata’s additive rescaling 
factor

20 
 

and/or falsification, double publication and/or submission, and redundancy, have been completely 
observed by the authors. 
 
OPEN ACCESS 
©2024 The author(s). This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution, and reproduction in any medium or 
format, as long as you give appropriate credit to the original author(s) and the source, provide a link 
to the Creative Commons license, and indicate if changes were made. The images or other third-party 
material in this article are included in the article’s Creative Commons license, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons 
license and your intended use is not permitted by statutory regulation or exceeds the permitted use, 
you will need to obtain permission directly from the copyright holder. To view a copy of this license, 
visit: http://creativecommons.org/licenses/by/4.0/ 
 
PUBLISHER’S NOTE 
GJESM Publisher remains neutral with regard to jurisdictional claims in published maps and 
institutional afflictions. 
 
ABBREVIATIONS 

% Percent 
Ɵs Angle of the sun's zenith in degrees 
ρ Wood density  
ρλ' Top of atmosphere reflectance 
ρp Planetary reflectance 
ρλ Surface reflectance 
π Phi 
% Percent 
AL The metadata's additive rescaling factor 
Aρ Additive rescaling factor from the metadata for each band 
AGB Total aboveground biomass 
ArcMap Geographic information as a collection of layers and other elements in a map 
C Celsius 
CO2 Carbondioxide 
csv Comma separated value 
d The astronomic distance between earth and sun 
DBH Diameter at breast height 
DN Digital numbers 
DOS1 Dark object subtraction 1 
Edown The downwelling diffuse irradiance 
ESUNλ The mean value of solar exo-atmospheric irradiances 
GIS Geographic information systems 
gr/cm3 Gram per cubic centimeter 
GAEZ+ Global agro-ecological zones’ + 
Gt Gigatons 
ha Hectares 
InVEST Integrated valuation of ecosystem services and tradeoffs 
IPCC Intergovernmental Panel on Climate Change 
km Kilometers 
Lλ Top of atmosphere spectral radiance 

Additive rescaling factor from the 
metadata for each band

AGB Total aboveground biomass

ArcMap Geographic information as a collection 
of layers and other elements in a map

C Celsius

CO2 Carbondioxide

csv Comma separated value

d
The astronomic distance between 
earth and sun

DBH Diameter at breast height

DN Digital numbers

DOS1 Dark object subtraction 1

downE The downwelling diffuse irradiance

20 
 

and/or falsification, double publication and/or submission, and redundancy, have been completely 
observed by the authors. 
 
OPEN ACCESS 
©2024 The author(s). This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution, and reproduction in any medium or 
format, as long as you give appropriate credit to the original author(s) and the source, provide a link 
to the Creative Commons license, and indicate if changes were made. The images or other third-party 
material in this article are included in the article’s Creative Commons license, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons 
license and your intended use is not permitted by statutory regulation or exceeds the permitted use, 
you will need to obtain permission directly from the copyright holder. To view a copy of this license, 
visit: http://creativecommons.org/licenses/by/4.0/ 
 
PUBLISHER’S NOTE 
GJESM Publisher remains neutral with regard to jurisdictional claims in published maps and 
institutional afflictions. 
 
ABBREVIATIONS 

% Percent 
Ɵs Angle of the sun's zenith in degrees 
ρ Wood density  
ρλ' Top of atmosphere reflectance 
ρp Planetary reflectance 
ρλ Surface reflectance 
π Phi 
% Percent 
AL The metadata's additive rescaling factor 
Aρ Additive rescaling factor from the metadata for each band 
AGB Total aboveground biomass 
ArcMap Geographic information as a collection of layers and other elements in a map 
C Celsius 
CO2 Carbondioxide 
csv Comma separated value 
d The astronomic distance between earth and sun 
DBH Diameter at breast height 
DN Digital numbers 
DOS1 Dark object subtraction 1 
Edown The downwelling diffuse irradiance 
ESUNλ The mean value of solar exo-atmospheric irradiances 
GIS Geographic information systems 
gr/cm3 Gram per cubic centimeter 
GAEZ+ Global agro-ecological zones’ + 
Gt Gigatons 
ha Hectares 
InVEST Integrated valuation of ecosystem services and tradeoffs 
IPCC Intergovernmental Panel on Climate Change 
km Kilometers 
Lλ Top of atmosphere spectral radiance 

The mean value of solar exo-
atmospheric irradiances

GIS Geographic information systems

gr/cm3 Gram per cubic centimeter

GAEZ+ Global agro-ecological zones’ +

Gt Gigatons

ha Hectares

InVEST Integrated valuation of ecosystem 
services and tradeoffs

IPCC Intergovernmental Panel on Climate 
Change

km Kilometers

20 
 

and/or falsification, double publication and/or submission, and redundancy, have been completely 
observed by the authors. 
 
OPEN ACCESS 
©2024 The author(s). This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution, and reproduction in any medium or 
format, as long as you give appropriate credit to the original author(s) and the source, provide a link 
to the Creative Commons license, and indicate if changes were made. The images or other third-party 
material in this article are included in the article’s Creative Commons license, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons 
license and your intended use is not permitted by statutory regulation or exceeds the permitted use, 
you will need to obtain permission directly from the copyright holder. To view a copy of this license, 
visit: http://creativecommons.org/licenses/by/4.0/ 
 
PUBLISHER’S NOTE 
GJESM Publisher remains neutral with regard to jurisdictional claims in published maps and 
institutional afflictions. 
 
ABBREVIATIONS 

% Percent 
Ɵs Angle of the sun's zenith in degrees 
ρ Wood density  
ρλ' Top of atmosphere reflectance 
ρp Planetary reflectance 
ρλ Surface reflectance 
π Phi 
% Percent 
AL The metadata's additive rescaling factor 
Aρ Additive rescaling factor from the metadata for each band 
AGB Total aboveground biomass 
ArcMap Geographic information as a collection of layers and other elements in a map 
C Celsius 
CO2 Carbondioxide 
csv Comma separated value 
d The astronomic distance between earth and sun 
DBH Diameter at breast height 
DN Digital numbers 
DOS1 Dark object subtraction 1 
Edown The downwelling diffuse irradiance 
ESUNλ The mean value of solar exo-atmospheric irradiances 
GIS Geographic information systems 
gr/cm3 Gram per cubic centimeter 
GAEZ+ Global agro-ecological zones’ + 
Gt Gigatons 
ha Hectares 
InVEST Integrated valuation of ecosystem services and tradeoffs 
IPCC Intergovernmental Panel on Climate Change 
km Kilometers 
Lλ Top of atmosphere spectral radiance Top of atmosphere spectral radiance

pL Path radiance

LULC Land use and land cover

21 
 

Lp Path radiance 
LULC Land use and land cover 
Mρ Metadata-derived band-specific multiplicative rescaling factor 
ML Metadata-derived multiplicative rescaling factor 
m Meters 
m2 Square meters 
mm/y Milimeters per year 
MLC Maximum likelihood classification 
MTL Metadata text file extension 
MW Megawatts 
n Number of plots 
NDVI Normalized difference vegetation index 
NIR Near-infrared band 
OLI Operational land imager 
ppm Parts per million 
Qcal Standard product pixel values or digital number value of a specific pixel 
SCP Semiautomatic classification plugin 
SEE Standard errors of estimate 
T Tree height 
Tv Atmospheric transmittance in the viewing direction 
Tz Atmospheric transmittance in the illumination direction 
tiff Temporary instruction file format 
TM Thematic mapper 
TOA Top of atmosphere 
tons/ha Tons per hectare 
yi Carbon value in plot number-i 

 
 
 
REFERENCES 
Astsatryan, H.; Hayrapetyan, A.; Narsisian, W.; Asmaryan, S.; Saghatelyan, A.; Muradyan, V.; 

Giuliani, G.; Guigoz, Y.; Ray, N., (2015). An interoperable cloud-based scientific GATEWAY for 
NDVI time series analysis. Comput. Stand. Interfaces. 4: 79-84 (6 pages). 

Bagstad, K.J.; Semmens, D.J.; Waage, S.; Winthrop, R., (2013). A comparative assessment of 
decision-support tools for ecosystem services quantification and valuation. Ecosyst. Serv., 5: 
27-39 (13 pages).  

Basalumi, L.; Kilawe, C.J.; Mauya, E.W., (2018). Linking ground forest inventory and NDVI in 
mapping above ground carbon stock in Kasane Forest Reserve, Botswana. Open J. For., 8(3): 
429-438 (10 pages).  

Batsaikhan, B.; Lkhamjav, O.; Batsaikhan, G.; Batsaikhan, N.; Norovsuren, B., (2020). Carbon stock 
estimation using remote sensing data and field measurement in haloxylon ammodendron 
dominant winter cold desert region of Mongolia. In XXIV ISPRS Congress, Commission III 
(Volume V-3-2020)- 2020 edition. 

Bera, B.; Bhattacharjee, S.; Sengupta, N.; Shit, P.K.; Adhikary, P.P.; Sengupta, D.; Saha, S., (2022). 
Significant reduction of carbon stocks and changes of ecosystem service valuation of Indian 
Sundarban. Sci. Rep., 12: 7809 (17 pages).  

Metadata-derived band-specific 
multiplicative rescaling factor

http://creativecommons.org/licenses/by/4.0/


262

A.D. Malik et al.

LM Metadata-derived multiplicative 
rescaling factor

m Meters

m2 Square meters

mm/y Milimeters per year

MLC Maximum likelihood classification

MTL Metadata text file extension

MW Megawatts

n Number of plots

NDVI Normalized difference vegetation 
index

NIR Near-infrared band

OLI Operational land imager

ppm Parts per million

calQ
Standard product pixel values or 
digital number value of a specific pixel

SCP Semiautomatic classification plugin

SEE Standard errors of estimate

T Tree height

vT
Atmospheric transmittance in the 
viewing direction

zT
Atmospheric transmittance in the 
illumination direction

tiff Temporary instruction file format

TM Thematic mapper

TOA Top of atmosphere

tons/ha Tons per hectare

iy Carbon value in plot number-i

REFERENCES
Arredondo-Trapero, F.G.; Guerra-Leal, E.M.; Kim, J., (2023). 

Effectiveness of the voluntary disclosure of corporate 
information and its commitment to climate change. 
Global J. Environ. Sci. Manage., 9(4): 1033-1048 (16 
pages).

Astsatryan, H.; Hayrapetyan, A.; Narsisian, W.; Asmaryan, 
S.; Saghatelyan, A.; Muradyan, V.; Giuliani, G.; Guigoz, Y.; 
Ray, N., (2015). An interoperable cloud-based scientific 
GATEWAY for NDVI time series analysis. Comput. Stand. 
Interfaces. 4: 79-84 (6 pages).

Bagstad, K.J.; Semmens, D.J.; Waage, S.; Winthrop, R., 
(2013). A comparative assessment of decision-support 

tools for ecosystem services quantification and valuation. 
Ecosyst. Serv., 5: 27-39 (13 pages). 

Basalumi, L.; Kilawe, C.J.; Mauya, E.W., (2018). Linking 
ground forest inventory and NDVI in mapping above 
ground carbon stock in Kasane Forest Reserve, Botswana. 
Open J. For., 8(3): 429-438 (10 pages). 

Batsaikhan, B.; Lkhamjav, O.; Batsaikhan, G.; Batsaikhan, 
N.; Norovsuren, B., (2020). Carbon stock estimation using 
remote sensing data and field measurement in haloxylon 
ammodendron dominant winter cold desert region of 
Mongolia. In XXIV ISPRS Congress, Commission III (Volume 
V-3-2020)- 2020 edition.

Bera, B.; Bhattacharjee, S.; Sengupta, N.; Shit, P.K.; Adhikary, 
P.P.; Sengupta, D.; Saha, S., (2022). Significant reduction of 
carbon stocks and changes of ecosystem service valuation 
of Indian Sundarban. Sci. Rep., 12: 7809 (17 pages). 

Bosino, A.; Omran, A.; Maerker, M., (2019). Identification, 
characterisation and analysis of the Oltrepo 
Pavese calanchi in the Northern Apennines (Italy). 
Geomorphology, 340: 53-66 (14 pages). 

Cahyono, W.; Parikesit; Joy, B.; Setyawati, W.; Mahdi, R., 
(2022). Projection of CO2 emissions in Indonesia. In 2nd 
International Conference on Chemical Engineering and 
Applied Sciences. Semarang, Indonesia 3 - 4 November. 
UNDIP: Indonesia.

Calderón-Contreras, R.; Quiroz-Rosas, L.E., (2017). Analysing 
scale, quality and diversity of green infrastructure and 
the provision of urban ecosystem services: A case from 
Mexico City. Ecosyst. Serv., 23: 127-137 (11 pages). 

Chacko, S.; Ravichandran, C.; Vairavel, S.M.; Mathew, J., 
(2018). Employing measurers of spatial distribution 
of carbon storage in Periyar Tiger Reserve, Southern 
Western Ghats, India. J. Geovisualization Spatial Anal., 
3(1): 1-7 (7 pages).

Chander, G.; Markham, B., (2003). Revised Landsat-5 TM 
radiometric calibration procedures and postcalibration 
dynamic ranges. IEEE Trans. Geosci. Remote Sens., 41(11): 
2674–2677 (4 pages). 

Chave, J.; Andalo, C.; Brown, S.; Cairns, M. A.; Chambers, 
J.Q.; Eamus, D.; Fölster, H.; Fromard, F.; Higuchi, N.; Kira, 
T.; Lescure, J.-P.; Nelson, B.W.; Ogawa, H.; Puig, H.; Riéra, 
B.; Yamakura, T., (2005). Tree allometry and improved 
estimation of carbon stocks and balance in tropical 
forests. Oecologia. 145(1): 87-99 (13 pages). 

Chavez Jr., P.S., (1989). Radiometric calibration of Landsat 
Thematic Mapper multispectral images. Photogramm. 
Eng. Remote Sens., 55(9): 1285-1294 (10 pages).

Christanty, L.; Abdoellah, O.S.; Marten, G.; Iskandar, J., 
(1986). Traditional agriculture in southeast Asia: A human 
ecology perspective. Westview Press.

Cong, W.; Sun, X.; Guo, H.; Shan, R., (2020). Comparison of 
the SWAT and InVEST models to determine hydrological 
ecosystem service spatial patterns, priorities and trade-
offs in a complex basin. Ecol. Indic., 112: 1-13 (13 pages).

Coutinho, H.L.C.; Noellemeyer, E.; Balieiro, F.de C.; Piñeiro, 

https://www.gjesm.net/article_704519.html
https://www.gjesm.net/article_704519.html
https://www.gjesm.net/article_704519.html
https://www.gjesm.net/article_704519.html
https://www.gjesm.net/article_704519.html
https://www.sciencedirect.com/science/article/abs/pii/S0920548915000173?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0920548915000173?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0920548915000173?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0920548915000173?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0920548915000173?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S221204161300051X?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S221204161300051X?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S221204161300051X?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S221204161300051X?via%3Dihub
https://www.scirp.org/journal/paperinformation.aspx?paperid=86382
https://www.scirp.org/journal/paperinformation.aspx?paperid=86382
https://www.scirp.org/journal/paperinformation.aspx?paperid=86382
https://www.scirp.org/journal/paperinformation.aspx?paperid=86382
https://isprs-annals.copernicus.org/articles/V-3-2020/9/2020/
https://isprs-annals.copernicus.org/articles/V-3-2020/9/2020/
https://isprs-annals.copernicus.org/articles/V-3-2020/9/2020/
https://isprs-annals.copernicus.org/articles/V-3-2020/9/2020/
https://isprs-annals.copernicus.org/articles/V-3-2020/9/2020/
https://isprs-annals.copernicus.org/articles/V-3-2020/9/2020/
https://www.nature.com/articles/s41598-022-11716-5
https://www.nature.com/articles/s41598-022-11716-5
https://www.nature.com/articles/s41598-022-11716-5
https://www.nature.com/articles/s41598-022-11716-5
https://www.sciencedirect.com/science/article/pii/S0169555X19301990?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0169555X19301990?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0169555X19301990?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0169555X19301990?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S2214785322022258?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S2214785322022258?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S2214785322022258?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S2214785322022258?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S2214785322022258?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S2212041616305381?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S2212041616305381?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S2212041616305381?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S2212041616305381?via%3Dihub
https://link.springer.com/article/10.1007/s41651-018-0024-8
https://link.springer.com/article/10.1007/s41651-018-0024-8
https://link.springer.com/article/10.1007/s41651-018-0024-8
https://link.springer.com/article/10.1007/s41651-018-0024-8
https://link.springer.com/article/10.1007/s41651-018-0024-8
https://ieeexplore.ieee.org/document/1245255
https://ieeexplore.ieee.org/document/1245255
https://ieeexplore.ieee.org/document/1245255
https://ieeexplore.ieee.org/document/1245255
https://link.springer.com/article/10.1007/s00442-005-0100-x
https://link.springer.com/article/10.1007/s00442-005-0100-x
https://link.springer.com/article/10.1007/s00442-005-0100-x
https://link.springer.com/article/10.1007/s00442-005-0100-x
https://link.springer.com/article/10.1007/s00442-005-0100-x
https://link.springer.com/article/10.1007/s00442-005-0100-x
http://pubs.er.usgs.gov/publication/70016102
http://pubs.er.usgs.gov/publication/70016102
http://pubs.er.usgs.gov/publication/70016102
http://gerrymarten.com/traditional-agriculture/tableofcontents.html
http://gerrymarten.com/traditional-agriculture/tableofcontents.html
http://gerrymarten.com/traditional-agriculture/tableofcontents.html
https://www.sciencedirect.com/science/article/pii/S1470160X20300261?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S1470160X20300261?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S1470160X20300261?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S1470160X20300261?via%3Dihub
https://www.cabidigitallibrary.org/doi/10.1079/9781780645322.0243


263

Global J. Environ. Sci. Manage., 10(1): 245-266, Winter 2024

G.; Fidalgo, E.C.C.; Martius, C.; Silva, C. F.da., (2015). 
Impacts of land-use change on carbon stocks and 
dynamics in central-southern South American biomes: 
Cerrado, Atlantic Forest and Southern Grasslands, in : 
Banwart S.A., Noellemeyer E., Milne, E. (Eds.), Soil carbon: 
science, management and policy for multiple benefits. 
CABI Digital Library. 

Darmawan, A.A.; Ariyanto, D.P.; Basuki, T.M.; Syamsiyah, 
J.; Dewi, W.S., (2022). Biomass accumulation and carbon 
sequestration potential in varying tree species, ages and 
densities in Gunung Bromo Education Forest, Central Java, 
Indonesia. Biodiversitas. 23(10): 5093-5100 (8 pages).

Davies, T.; Everard, M.; Horswell, M., (2016). Community-
based groundwater and ecosystem restoration in semi-
arid north Rajasthan (3): evidence from remote sensing. 
Ecosyst. Serv., 21(2016): 20-30 (11 pages). 

Dewanto, B.E.B.; Jatmiko, R.H., (2021). Estimation of 
aboveground carbon stock using SAR Sentinel-1 imagery 
in samarinda city. IJReSES. 18(1): 103-116 (14 pages).

Dida, J.J.; Tiburan Jr.,C.; Tsutsumida, N.; Saizen, I., (2021). 
Carbon stock estimation of selected watersheds in 
Laguna, Philippines Using InVEST. Philipp J. Sci., 150(2): 
501-513 (13 pages). 

FAO, (2016). Global forest resources assessment 2015: 
How are the world’s forests changing? (second edition). 
Food and Agriculture Organization of the United Nations, 
Rome.

Forestry Economics and Policy Division, (2010). Global forest 
resources assessment 2010—main report. Food and 
Agriculture Organization of the United Nations, Rome.

Frolking, S.; Wisser, D.; Grogan, D.; Proussevitch, A.; Glidden, 
S., (2020). GAEZ+_2015 crop yield. Harvard Dataverse.

Frimawaty, E.; Ilmika, A.; Sakina, N.A; Mustabi. J., (2023). 
Climate change mitigation and adaptation through livestock 
waste management. Global J. Environ. Sci. Manage., 9(4): 
691-706 (16 pages).

Hairiah, K.; Dewi, S.; Agus, F.; Velarde, S.; Ekadinata, A.; 
Rahayu, S.; van Noordwijk, M., (2011). Measuring 
carbon stocks across land use systems: a manual. World 
Agroforestry Centre (ICRAF) SEA Region Office, Bogor.

Harper, A.B.; Wiltshire, A.J.; Cox, P.M.; Friedlingstein, P.; 
Jones, C.D.; Mercado, L.M.; Sitch, S.; Williams, K.; Duran-
Rojas, C., (2018). Vegetation distribution and terrestrial 
carbon cycle in a carbon cycle configuration of JULES4.6 
with new plant functional types. Geosci. Model Dev., 
11(7): 2857-2873 (17 pages).

Hassan, W.H.; Nile, B.K., (2021). Climate change and 
predicting future temperature in Iraq using CanESM2 and 
HadCM3 modeling. Model. Earth Syst. Environ., 7(2): 737-
748 (12 pages). 

Hua, A.K.; Ping, O.W., (2018). The influence of land-use/
land-cover changes on land surface temperature: A case 
study of Kuala Lumpur metropolitan city. Eur. J. Remote 
Sens., 51(1): 1049-1069 (21 pages). 

IPCC, (2022). Global Warming of 1.5°C: IPCC special report 

on impacts of global warming of 1.5°c above pre-
industrial levels in context of strengthening response to 
climate change, sustainable development, and efforts to 
eradicate poverty (1st ed.). Cambridge University Press, 
Cambridge.

IPCC, (2014). AR5 synthesis report: climate change 2014: 
Intergovernmental Panel for Climate Change. 

Jagdish, J.; Erayya; Makanur, B.; Sajeesh, P.K.; Managanvi, 
K., (2013). Prospects for mitigation of greenhouse gas 
emission: in context to agriculture and climate change. 
Environ. Ecol., 31(2): 551-557 (7 pages). 

Jamali, S.; Seaquist, J.W.; Ardö, J.; Eklundh, L., (2011). 
Investigating temporal relationships between rainfall, soil 
moisture and Modis-Derived NDVI and EVI for six sites 
in Africa. in 34th International Symposium on Remote 
Sensing of Environment. Sydney, Australia 10-15 April. 
International Center for Remote Sensing of Environment: 
Tucson.

Javaherian, M.; Ebrahimi, H.; Aminnejad, B., (2021). 
Prediction of changes in climatic parameters using 
CanESM2 model based on RCP scenarios (case study): Lar 
dam basin. Ain. Shams. Eng. J., 12(1): 445-454 (10 pages). 

Jaya, L.M.G.; Saputra, R.A.; Idrus, S.H., (2022). Using support 
vector machine to identify land cover change during 
covid-19 pandemic in Komodo National Park, Indonesia. 
Geogr. Environ. Sustainability. 15(3): 70-79 (10 pages). 

Jiang, H.; Wu, W.; Wang, J.; Yang, W.; Gao, Y.; Duan, Y.; Ma, 
G.; Wu, C.; Shao, J., (2021). Mapping global value of 
terrestrial ecosystem services by countries. Ecosyst. Serv., 
52(2021): 101361 (10 pages). 

Karbassi, A.R.; Tajziehchi, S.; Afshar, S., (2015). An 
investigation on heavy metals in soils around oil field area. 
Global J. Environ. Sci. Manage., 1(4): 275-282 (8 pages).

Khaerani, R.; Sitorus, S.R.P.; Rusdiana, O., (2018). Analysis 
of land use deviation based on spatial plan in Sumedang 
Regency. TATALOKA. 20(4): 399-409 (11 pages). 

KLHK, (2018). The state of Indonesia’s forests 2018. Ministry 
of Environment and Forestry Republic of Indonesia 
(KLHK), Jakarta.

Kusumaningtyas, M.A.; Kepel, T.L.; Solihuddin, T.; Lubis, 
A.A.; Putra, A.D.P.; Sugiharto, U.; Ati, R.N.A.; Salim, H.L.; 
Mustikasari, E.; Heriati, A.; Daulat, A.; Sudirman, N.; 
Suryono, D.D.; Rustam, A., (2022). Carbon sequestration 
potential in the rehabilitated mangroves in Indonesia. 
Ecol. Res., 37(1): 80-91 (12 pages). 

Lahiji, R. N.; Dinan, N.M.; Liaghati, H.; Ghaffarzadeh, H.; 
Vafaeinejad, A., (2020). Scenario-based estimation of 
catchment carbon storage: Linking multi-objective land 
allocation with InVEST model in a mixed agriculture-forest 
landscape. Front. Earth Sci., 14(3): 637-646 (10 pages). 

Latifah, S.; Muhdi, M.; Purwoko, A.; Tanjung, E., (2018). 
Estimation of aboveground tree biomass Toona sureni 
and Coffea arabica in agroforestry system of Simalungun, 
North Sumatra, Indonesia. Biodiversitas. 19(2): 670-675 
(6 pages).

https://www.cabidigitallibrary.org/doi/10.1079/9781780645322.0243
https://www.cabidigitallibrary.org/doi/10.1079/9781780645322.0243
https://www.cabidigitallibrary.org/doi/10.1079/9781780645322.0243
https://www.cabidigitallibrary.org/doi/10.1079/9781780645322.0243
https://www.cabidigitallibrary.org/doi/10.1079/9781780645322.0243
https://www.cabidigitallibrary.org/doi/10.1079/9781780645322.0243
https://www.cabidigitallibrary.org/doi/10.1079/9781780645322.0243
https://smujo.id/biodiv/article/view/11910
https://smujo.id/biodiv/article/view/11910
https://smujo.id/biodiv/article/view/11910
https://smujo.id/biodiv/article/view/11910
https://smujo.id/biodiv/article/view/11910
https://www.sciencedirect.com/science/article/abs/pii/S2212041616301681?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S2212041616301681?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S2212041616301681?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S2212041616301681?via%3Dihub
https://jurnal.lapan.go.id/index.php/ijreses/article/view/3609
https://jurnal.lapan.go.id/index.php/ijreses/article/view/3609
https://jurnal.lapan.go.id/index.php/ijreses/article/view/3609
https://philjournalsci.dost.gov.ph/publication/regular-issues/past-issues/103-vol-150-no-2-april-2021/1332-carbon-stock-estimation-of-selected-watersheds-in-laguna-philippines-using-invest
https://philjournalsci.dost.gov.ph/publication/regular-issues/past-issues/103-vol-150-no-2-april-2021/1332-carbon-stock-estimation-of-selected-watersheds-in-laguna-philippines-using-invest
https://philjournalsci.dost.gov.ph/publication/regular-issues/past-issues/103-vol-150-no-2-april-2021/1332-carbon-stock-estimation-of-selected-watersheds-in-laguna-philippines-using-invest
https://philjournalsci.dost.gov.ph/publication/regular-issues/past-issues/103-vol-150-no-2-april-2021/1332-carbon-stock-estimation-of-selected-watersheds-in-laguna-philippines-using-invest
https://www.fao.org/documents/card/es/c/770b9ce6-9f65-4a46-a9af-1abbb0f71ab1/
https://www.fao.org/documents/card/es/c/770b9ce6-9f65-4a46-a9af-1abbb0f71ab1/
https://www.fao.org/documents/card/es/c/770b9ce6-9f65-4a46-a9af-1abbb0f71ab1/
https://www.fao.org/documents/card/es/c/770b9ce6-9f65-4a46-a9af-1abbb0f71ab1/
https://www.fao.org/publications/card/en/c/e4fa9d60-5207-5a96-976c-cd2e6f3519a5/
https://www.fao.org/publications/card/en/c/e4fa9d60-5207-5a96-976c-cd2e6f3519a5/
https://www.fao.org/publications/card/en/c/e4fa9d60-5207-5a96-976c-cd2e6f3519a5/
https://www.gjesm.net/article_703123.html
https://www.gjesm.net/article_703123.html
https://www.gjesm.net/article_703123.html
https://www.gjesm.net/article_703123.html
https://www.gjesm.net/article_703123.html
https://www.gjesm.net/article_703123.html
http://apps.worldagroforestry.org/sea/Publications/files/manual/MN0050-11/MN0050-11-1.pdf
http://apps.worldagroforestry.org/sea/Publications/files/manual/MN0050-11/MN0050-11-1.pdf
http://apps.worldagroforestry.org/sea/Publications/files/manual/MN0050-11/MN0050-11-1.pdf
http://apps.worldagroforestry.org/sea/Publications/files/manual/MN0050-11/MN0050-11-1.pdf
https://gmd.copernicus.org/articles/11/2857/2018/
https://gmd.copernicus.org/articles/11/2857/2018/
https://gmd.copernicus.org/articles/11/2857/2018/
https://gmd.copernicus.org/articles/11/2857/2018/
https://gmd.copernicus.org/articles/11/2857/2018/
https://gmd.copernicus.org/articles/11/2857/2018/
https://link.springer.com/article/10.1007/s40808-020-01034-y
https://link.springer.com/article/10.1007/s40808-020-01034-y
https://link.springer.com/article/10.1007/s40808-020-01034-y
https://link.springer.com/article/10.1007/s40808-020-01034-y
https://www.tandfonline.com/doi/full/10.1080/22797254.2018.1542976
https://www.tandfonline.com/doi/full/10.1080/22797254.2018.1542976
https://www.tandfonline.com/doi/full/10.1080/22797254.2018.1542976
https://www.tandfonline.com/doi/full/10.1080/22797254.2018.1542976
https://www.cambridge.org/core/books/global-warming-of-15c/D7455D42B4C820E706A03A169B1893FA
https://www.cambridge.org/core/books/global-warming-of-15c/D7455D42B4C820E706A03A169B1893FA
https://www.cambridge.org/core/books/global-warming-of-15c/D7455D42B4C820E706A03A169B1893FA
https://www.cambridge.org/core/books/global-warming-of-15c/D7455D42B4C820E706A03A169B1893FA
https://www.cambridge.org/core/books/global-warming-of-15c/D7455D42B4C820E706A03A169B1893FA
https://www.cambridge.org/core/books/global-warming-of-15c/D7455D42B4C820E706A03A169B1893FA
https://www.ipcc.ch/report/ar5/syr/
https://www.ipcc.ch/report/ar5/syr/
https://www.environmentandecology.com/volume-31-2013
https://www.environmentandecology.com/volume-31-2013
https://www.environmentandecology.com/volume-31-2013
https://www.environmentandecology.com/volume-31-2013
https://www.isprs.org/proceedings/2011/isrse-34/211104015Final00443.pdf
https://www.isprs.org/proceedings/2011/isrse-34/211104015Final00443.pdf
https://www.isprs.org/proceedings/2011/isrse-34/211104015Final00443.pdf
https://www.isprs.org/proceedings/2011/isrse-34/211104015Final00443.pdf
https://www.isprs.org/proceedings/2011/isrse-34/211104015Final00443.pdf
https://www.isprs.org/proceedings/2011/isrse-34/211104015Final00443.pdf
https://www.isprs.org/proceedings/2011/isrse-34/211104015Final00443.pdf
https://www.sciencedirect.com/science/article/pii/S2090447920300964?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S2090447920300964?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S2090447920300964?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S2090447920300964?via%3Dihub
https://ges.rgo.ru/jour/article/view/2608
https://ges.rgo.ru/jour/article/view/2608
https://ges.rgo.ru/jour/article/view/2608
https://ges.rgo.ru/jour/article/view/2608
https://www.sciencedirect.com/science/article/pii/S2212041621001194?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S2212041621001194?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S2212041621001194?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S2212041621001194?via%3Dihub
https://www.gjesm.net/article_14054.html
https://www.gjesm.net/article_14054.html
https://www.gjesm.net/article_14054.html
https://ejournal2.undip.ac.id/index.php/tataloka/article/view/1614
https://ejournal2.undip.ac.id/index.php/tataloka/article/view/1614
https://ejournal2.undip.ac.id/index.php/tataloka/article/view/1614
https://balaikliringkehati.menlhk.go.id/wp-content/uploads/SoiFo.pdf
https://balaikliringkehati.menlhk.go.id/wp-content/uploads/SoiFo.pdf
https://balaikliringkehati.menlhk.go.id/wp-content/uploads/SoiFo.pdf
https://esj-journals.onlinelibrary.wiley.com/doi/10.1111/1440-1703.12279
https://esj-journals.onlinelibrary.wiley.com/doi/10.1111/1440-1703.12279
https://esj-journals.onlinelibrary.wiley.com/doi/10.1111/1440-1703.12279
https://esj-journals.onlinelibrary.wiley.com/doi/10.1111/1440-1703.12279
https://esj-journals.onlinelibrary.wiley.com/doi/10.1111/1440-1703.12279
https://esj-journals.onlinelibrary.wiley.com/doi/10.1111/1440-1703.12279
https://link.springer.com/article/10.1007/s11707-020-0825-1
https://link.springer.com/article/10.1007/s11707-020-0825-1
https://link.springer.com/article/10.1007/s11707-020-0825-1
https://link.springer.com/article/10.1007/s11707-020-0825-1
https://link.springer.com/article/10.1007/s11707-020-0825-1
https://smujo.id/biodiv/article/view/3028
https://smujo.id/biodiv/article/view/3028
https://smujo.id/biodiv/article/view/3028
https://smujo.id/biodiv/article/view/3028
https://smujo.id/biodiv/article/view/3028


264

A.D. Malik et al.

Lee, H.; Seo, B.; Cord, A.F.; Volk, M.; Lautenbach, S., (2022). 
Using crowdsourced images to study selected cultural 
ecosystem services and their relationships with species 
richness and carbon sequestration. Ecosyst. Serv., 
54(2022): 101411 (12 pages). 

Li, S.; Wang, W.; Ganguly, S.; Nemani, R.R., (2018). 
Radiometric characteristics of the Landsat collection 
1 dataset. Int. J. Adv. Remote Sens., 7(3): 203-217 (14 
pages). 

Liang, Y.; Liu, L.; Huang, J., (2017). Integrating the SD-
CLUE-S and InVEST models into assessment of oasis 
carbon storage in northwestern China. PLoS One. 12(2): 
e0172494 (15 pages). 

Liu, J.; Sleeter, B.M.; Zhu, Z.; Heath, L.S.; Tan, Z.; Wilson, 
T.S.; Sherba, J.; Zhou, D., (2016). Estimating carbon 
sequestration in  the piedmont ecoregion of  the United 
States from  1971 to  2010. Carbon Balance Manage., 
11(10): 10-22 (13 pages).

Liu, J.; Mason, P.J.; Bryant, E.C., (2018). Regional assessment 
of geohazard recovery eight years after the Mw7.9 
Wenchuan earthquake: A remote-sensing investigation 
of the Beichuan region. Int. J. Remote Sens., 39(6): 1671-
1695 (25 pages).

Luth, F.; Setiyono, H., (2019). Capacity of coffee-based 
agroforestry in carbon storage. Paspalum, 7(1): 34-41 (8 
pages). 

Marchetti, Z.Y.; Minotti, P.G.; Ramonell, C.G.; Schivo, 
F.; Kandus, P., (2016). NDVI patterns as indicator of 
morphodynamic activity in the middle Paraná River 
floodplain. Geomorphology, 253: 146-158 (13 pages).

Massetti, A.; Gil, A., (2020). Mapping and assessing land 
cover/land use and aboveground carbon stocks rapid 
changes in small oceanic islands’ terrestrial ecosystems: 
a case study of Madeira Island, Portugal (2009–2011). 
Remote Sens. Environ., 239(2020): 111625 (11 pages).

Masripatin, N.; Gustan, P.; Wayan, S.; Chairil, A.; Ari, W.; 
Dyah, S.; Arief; Niken, S.; Mega, L.; In-dartik; Wening, W.; 
Saptadi, D.; Ika, H.; Heriyanto, N.; Haris, S.; Ratih, D.; Dian, 
A.; Haruni, K.; Bayu, S., (2010). Carbon stocks in many types 
of forests and plants in indonesia. Pusat Penelitian dan 
Pengembangan  Perubahan  Iklim  dan Kebijakan, Bogor.

Millennium Ecosystem Assessment, (2005). Ecosystems 
and human well-being: wetlands and water synthesis: a 
report of the Millennium Ecosystem Assessment. World 
Resources Institute, Washington DC.

Moran, M.S.; Jackson, R.D.; Slater, P.N.; Teillet, P.M., (1992). 
Evaluation of simplified procedures for retrieval of land 
surface reflectance factors from satellite sensor output. 
Remote Sens. Environ., 41(2): 169-184 (16 pages). 

Natalia, D.; Arisoesilaningsih, E.; Hairiah, K., (2016). Are high 
carbon stocks in agroforests and forest associated with 
high plant species diversity? AGRIVITA. 39(1): 74-82 (9 
pages). 

Nelson, E.; Mendoza, G.; Regetz, J.; Polasky, S.; Tallis, H.; 
Cameron, Dr.; Chan, K.M.; Daily, G.C.; Goldstein, J.; 

Kareiva, P.M.; Lonsdorf, E.; Naidoo, R.; Ricketts, T.H.; 
Shaw, Mr., (2009). Modeling multiple ecosystem services, 
biodiversity conservation, commodity production, and 
tradeoffs at landscape scales. Front. Ecol. Environ., 7(1): 
4-11 (8 pages). 

Nijhawan, R.; Jain, K., (2018). Glacier terminus position 
monitoring and modeling using remote sensing data, 
in: M. Singh, P.K., Gupta, V., Tyagi, J., Flusser, Ören, T. 
(Eds.), Advances in computing and data sciences. Springer 
Singapore. Singapore.

Ostadhashemi, R.; Rostami, S.T.; Roehle, H.; Mohammadi, 
L.S., (2014). Estimation of biomass and carbon storage of 
tree plantations in northern Iran. J. For. Sci., 60(9): 363-
371 (9 pages). 

Paquit, J.; Mindana, F., (2017). Modeling the spatial pattern 
of carbon stock in Central Mindanao University using 
InVEST tool. J. Bio. Environ. Sci., 10(4): 103-113 (11 
pages).

Parikesit; Takeuchi, K.; Tsunekawa, A.; Abdoellah, O.S., 
(2005). Kebon tatangkalan: a disappearing agroforest 
in the Upper Citarum Watershed, West Java, Indonesia. 
Agrofor. Syst., 63(2): 171-182 (12 pages).

Pellikka, P.K.E.; Heikinheimo, V.; Hietanen, J.; Schäfer, E.; 
Siljander, M.; Heiskanen, J., (2018). Impact of land cover 
change on aboveground carbon stocks in Afromontane 
landscape in Kenya. Appl. Geogr., 94: 178-189 (12 pages). 

Piyathilake, I.D.U.H.; Udayakumara, E.P.N.; Ranaweera, L.V.; 
Gunatilake, S.K., (2022). Modeling predictive assessment 
of carbon storage using InVEST model in Uva province, Sri 
Lanka. Model. Earth Syst. Environ., 8(2): 2213-2223 (11 
pages). 

Posner, S.; Verutes, G.; Koh, I.; Denu, D.; Ricketts, T., (2016). 
Global use of ecosystem service models. Ecosyst. Serv, 
17(2016): 131-141 (11 pages). 

Rouse, J.W.Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W., (1974). 
Monitoring vegetation systems in the great plains with 
erts. NASA Special Publication, Washington DC.

Saito, H.; Uchiyama, S.; Teshirogi, K., (2022). Rapid vegetation 
recovery at landslide scars detected by multitemporal 
high-resolution satellite imagery at ASO volcano, Japan. 
Geomorphology. 398(2022): 107989 (9 pages). 

Sampurno, R.M.; Thoriq, A., (2016). Land cover classification 
using Landsat 8 Operational Land Imager (OLI) data in 
Sumedang Regency. Teknotan. 10(2): 61-70 (10 pages).

Senseman, G.M.; Bagley, C.F.; Tweddale, S.A., (1995). 
Accuracy assessment of the discrete classification of 
remotely-sensed digital data for landcover mapping. US 
Army Corps of Engineers, Virginia.

Sharp, R.; Douglass, C.; Wolny, S.; Arkema, K.; Bernhardt, 
J.; Bierbower, N.; Chaumont, N.; Denu, D.; Fisher, D.; 
Glowinski, K.; Griffin, R.; Guannel, G.; Guerry, A.; Johnson, 
J.; Hamel, P.; Kennedy, C.; Kim, C.K.; Lacayo, M.; Lonsdorf, 
E.; Mandle, L.; Rogers, L.; Silver, J.; Toft, J.; Verutes, G.; 
Vogl, A.L.; Wood, S.; Wyatt, K., (2018). InVEST 3.7.0 user’s 
guide. The Natural Capital Project, Stanford University, 

https://www.sciencedirect.com/science/article/pii/S2212041622000079?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S2212041622000079?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S2212041622000079?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S2212041622000079?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S2212041622000079?via%3Dihub
https://www.scirp.org/journal/paperinformation.aspx?paperid=87267
https://www.scirp.org/journal/paperinformation.aspx?paperid=87267
https://www.scirp.org/journal/paperinformation.aspx?paperid=87267
https://www.scirp.org/journal/paperinformation.aspx?paperid=87267
https://link.springer.com/article/10.1186/s13021-016-0052-y
https://link.springer.com/article/10.1186/s13021-016-0052-y
https://link.springer.com/article/10.1186/s13021-016-0052-y
https://link.springer.com/article/10.1186/s13021-016-0052-y
https://link.springer.com/article/10.1186/s13021-016-0052-y
https://www.tandfonline.com/doi/full/10.1080/01431161.2017.1410299
https://www.tandfonline.com/doi/full/10.1080/01431161.2017.1410299
https://www.tandfonline.com/doi/full/10.1080/01431161.2017.1410299
https://www.tandfonline.com/doi/full/10.1080/01431161.2017.1410299
https://www.tandfonline.com/doi/full/10.1080/01431161.2017.1410299
https://journal.unwim.ac.id/index.php/paspalum/article/view/109
https://journal.unwim.ac.id/index.php/paspalum/article/view/109
https://journal.unwim.ac.id/index.php/paspalum/article/view/109
https://www.sciencedirect.com/science/article/abs/pii/S0169555X15301689?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0169555X15301689?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0169555X15301689?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0169555X15301689?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0034425719306455
https://www.sciencedirect.com/science/article/pii/S0034425719306455
https://www.sciencedirect.com/science/article/pii/S0034425719306455
https://www.sciencedirect.com/science/article/pii/S0034425719306455
https://www.sciencedirect.com/science/article/pii/S0034425719306455
http://library.forda-mof.org/katalog/index.php?p=show_detail&id=20259
http://library.forda-mof.org/katalog/index.php?p=show_detail&id=20259
http://library.forda-mof.org/katalog/index.php?p=show_detail&id=20259
http://library.forda-mof.org/katalog/index.php?p=show_detail&id=20259
http://library.forda-mof.org/katalog/index.php?p=show_detail&id=20259
http://library.forda-mof.org/katalog/index.php?p=show_detail&id=20259
https://www.wri.org/research/millennium-ecosystem-assessment-ecosystems-and-human-well-being
https://www.wri.org/research/millennium-ecosystem-assessment-ecosystems-and-human-well-being
https://www.wri.org/research/millennium-ecosystem-assessment-ecosystems-and-human-well-being
https://www.wri.org/research/millennium-ecosystem-assessment-ecosystems-and-human-well-being
https://www.sciencedirect.com/science/article/abs/pii/003442579290076V?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/003442579290076V?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/003442579290076V?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/003442579290076V?via%3Dihub
https://agrivita.ub.ac.id/index.php/agrivita/article/view/676
https://agrivita.ub.ac.id/index.php/agrivita/article/view/676
https://agrivita.ub.ac.id/index.php/agrivita/article/view/676
https://agrivita.ub.ac.id/index.php/agrivita/article/view/676
https://esajournals.onlinelibrary.wiley.com/doi/full/10.1890/080023
https://esajournals.onlinelibrary.wiley.com/doi/full/10.1890/080023
https://esajournals.onlinelibrary.wiley.com/doi/full/10.1890/080023
https://esajournals.onlinelibrary.wiley.com/doi/full/10.1890/080023
https://esajournals.onlinelibrary.wiley.com/doi/full/10.1890/080023
https://esajournals.onlinelibrary.wiley.com/doi/full/10.1890/080023
https://esajournals.onlinelibrary.wiley.com/doi/full/10.1890/080023
https://link.springer.com/chapter/10.1007/978-981-13-1813-9_2
https://link.springer.com/chapter/10.1007/978-981-13-1813-9_2
https://link.springer.com/chapter/10.1007/978-981-13-1813-9_2
https://link.springer.com/chapter/10.1007/978-981-13-1813-9_2
https://link.springer.com/chapter/10.1007/978-981-13-1813-9_2
https://jfs.agriculturejournals.cz/artkey/jfs-201409-0002_estimation-of-biomass-and-carbon-storage-of-tree-plantations-in-northern-iran.php
https://jfs.agriculturejournals.cz/artkey/jfs-201409-0002_estimation-of-biomass-and-carbon-storage-of-tree-plantations-in-northern-iran.php
https://jfs.agriculturejournals.cz/artkey/jfs-201409-0002_estimation-of-biomass-and-carbon-storage-of-tree-plantations-in-northern-iran.php
https://jfs.agriculturejournals.cz/artkey/jfs-201409-0002_estimation-of-biomass-and-carbon-storage-of-tree-plantations-in-northern-iran.php
https://papers.ssrn.com/abstract=3574615
https://papers.ssrn.com/abstract=3574615
https://papers.ssrn.com/abstract=3574615
https://papers.ssrn.com/abstract=3574615
https://link.springer.com/article/10.1007/s10457-004-1182-x
https://link.springer.com/article/10.1007/s10457-004-1182-x
https://link.springer.com/article/10.1007/s10457-004-1182-x
https://link.springer.com/article/10.1007/s10457-004-1182-x
https://www.sciencedirect.com/science/article/pii/S0143622817309979
https://www.sciencedirect.com/science/article/pii/S0143622817309979
https://www.sciencedirect.com/science/article/pii/S0143622817309979
https://www.sciencedirect.com/science/article/pii/S0143622817309979
https://link.springer.com/article/10.1007/s40808-021-01207-3
https://link.springer.com/article/10.1007/s40808-021-01207-3
https://link.springer.com/article/10.1007/s40808-021-01207-3
https://link.springer.com/article/10.1007/s40808-021-01207-3
https://link.springer.com/article/10.1007/s40808-021-01207-3
https://www.sciencedirect.com/science/article/abs/pii/S2212041615300668?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S2212041615300668?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S2212041615300668?via%3Dihub
https://ui.adsabs.harvard.edu/abs/1974NASSP.351..309R
https://ui.adsabs.harvard.edu/abs/1974NASSP.351..309R
https://ui.adsabs.harvard.edu/abs/1974NASSP.351..309R
https://www.sciencedirect.com/science/article/pii/S0169555X21003974?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0169555X21003974?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0169555X21003974?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0169555X21003974?via%3Dihub
https://jurnal.unpad.ac.id/teknotan/article/view/9941/0#:~:text=Hasil klasifikasi citra Landsat 8,tanah terbuka dan badan air.
https://jurnal.unpad.ac.id/teknotan/article/view/9941/0#:~:text=Hasil klasifikasi citra Landsat 8,tanah terbuka dan badan air.
https://jurnal.unpad.ac.id/teknotan/article/view/9941/0#:~:text=Hasil klasifikasi citra Landsat 8,tanah terbuka dan badan air.
https://apps.dtic.mil/sti/citations/ADA296212
https://apps.dtic.mil/sti/citations/ADA296212
https://apps.dtic.mil/sti/citations/ADA296212
https://apps.dtic.mil/sti/citations/ADA296212
https://invest.readthedocs.io/en/3.7.0/cli.html
https://invest.readthedocs.io/en/3.7.0/cli.html
https://invest.readthedocs.io/en/3.7.0/cli.html
https://invest.readthedocs.io/en/3.7.0/cli.html
https://invest.readthedocs.io/en/3.7.0/cli.html
https://invest.readthedocs.io/en/3.7.0/cli.html
https://invest.readthedocs.io/en/3.7.0/cli.html


265

Global J. Environ. Sci. Manage., 10(1): 245-266, Winter 2024

University of Minnesota, The Nature Conservancy, and 
World Wildlife Fund, California.

Sharp, R.; Douglass, C.; Wolny, S.; Arkema, K.; Bernhardt, 
J.; Bierbower, N.; Chaumont, N.; Denu, D.; Fisher, D.; 
Glowinski, K.; Griffin, R.; Guannel, G.; Guerry, A.; Johnson, 
J.; Hamel, P.; Kennedy, C.; Kim, C.K.; Lacayo, M.; Lonsdorf, 
E.; Mandle, L.; Rogers, L.; Silver, J.; Toft, J.; Verutes, G.; 
Vogl, A.L.; Wood, S.; Wyatt, K., (2020). InVEST 3.10.2 user’s 
guide. The Natural Capital Project, Stanford University, 
University of Minnesota, The Nature Conservancy, and 
World Wildlife Fund, California.

Shrestha, M.; Piman, T.; Grünbühel, C., (2021). Prioritizing 
key biodiversity areas for conservation based on threats 
and ecosystem services using participatory and GIS-based 
modeling in Chindwin River Basin, Myanmar. Ecosyst. 
Serv., 48: 101244 (11 pages). 

Situmorang, J.P.; Sugianto, S.; Darusman., (2016). Estimation 
of carbon stock stands using EVI and NDVI vegetation 
index in production forest of Lembah Seulawah Sub-
district, Aceh Indonesia. Aceh Int. J. Sci. Technol., 5(3): 
126-139 (14 pages). 

Smith, G., (2015). Essential statistics, regression, and 
econometrics. Academic Press, California.

Soemarwoto, O., (1984). The talun-kebun system, a modified 
shifting cultivation, in West Java. The Environmentalist. 
4(1984): 96-98 (3 pages). 

Solomon, N.; Birhane, E.; Tadesse, T.; Treydte, A.C.; Meles, 
K., (2017). Carbon stocks and sequestration potential 
of dry forests under community management in Tigray, 
Ethiopia. Ecol. Processes. 6(1): 20-30 (11 pages). 

Solomon, N.; Pabi, O.; Annang, T.; Asante, I.K.; Birhane, 
E., (2018). The effects of land cover change on carbon 
stock dynamics in a dry Afromontane forest in northern 
Ethiopia. Carbon Balance Manage., 13(1): 14-26 (13 
pages). 

Suharyanto, A.; Maulana, A.; Suprayogo, D.; Devia, Y.P.; 
Kurniawan, S., (2023). Land surface temperature changes 
caused by land cover/ land use properties and their 
impact on rainfall characteristics. Global J. Environ., Sci. 
Manage., 9(3): 353-372 (20 pages).

Sumedang Regency, (2019). Decree of Sumedang Regent 
No. 51 Year 2019 : strategic plan for Rancakalong District, 
2018—2023.

Tang, Y.; Quaqin, S.; Tiezhu, S.; Zhensheng, L.; Guofeng, W., 
(2022). Spatiotemporal dynamics of forest ecosystem 
carbon budget in Guizhou: customisation and application 
of the CBM-CFS3 model for China. Carbon Balance 
Manage., 17(1): 10-33 (23 pages).

Thom, D.; Rammer, W.; Seidl, R., (2017). The impact of 
future forest dynamics on climate: Interactive effects 
of changing vegetation and disturbance regimes. Ecol. 
Monogr., 87(4): 665-684 (19 pages). 

Thonfeld, F.; Steinbach, S.; Muro, J.; Hentze, K.; Games, 
I.; Näschen, K.; Kauzeni, P.F., (2020). The impact of 
anthropogenic land use change on the protected 
areas of the Kilombero catchment, Tanzania. IISPRS J. 
Photogramm. Remote Sens., 168: 41-55 (15 pages). 

Toru, T.; Kibret, K., (2019). Carbon stock under major land 
use/land cover types of Hades sub-watershed, astern 
Ethiopia. Carbon Balance Manage., 14(1): 7-20 (14 pages). 

Vafaei, S.; Soosani, J.; Adeli, K.; Fadaei, H.; Naghavi, H.; Pham, 
T.D.; Tien B.D., (2018). Improving accuracy estimation of 
forest aboveground biomass based on incorporation of 
ALOS-2 PALSAR-2 and Sentinel-2a imagery and machine 
learning: a case study of the hyrcanian forest area (Iran). 
Remote Sens., 10(2): 172-192 (21 pages). 

Wang, L.; Zhu, R.; Yin, Z.; Chen, Z.; Fang, C.; Lu, R.; Zhou, 
J.; Feng, Y., (2022). Impacts of land-use change on the 
spatio-temporal patterns of terrestrial ecosystem carbon 
storage in the Gansu Province, Northwest China. Remote 
Sens., 14(13): 3164-3190 (27 pages).

Wani, A.A.; Bhat, A.F.; Gatoo, A.A.; Zahoor, S.; Mehraj, B.; 
Najam, N.; Wani, Q.S.; Islam, M.A.; Murtaza, S.; Dervash, 
M.A.; Joshi, P.K., (2021). Assessing relationship of forest 
biophysical factors with NDVI for carbon management in 
key coniferous strata of temperate Himalayas. Mitigation 
Adapt. Strategies Global Change. 26(1): 1-22 (23 pages). 

Yesserie, A., (2009). Spatio-temporal land use/land 
cover changes analysis and monitoring in the Valencia 
Municipality, Spain. Ph.D. Dissertation, Universitat Jaume 
I Castellón, Spain.

Zanne, A.E.; Lopez-Gonzalez, G.; Coomes, D.A.; Ilic, J.; 
Jansen, S.; Lewis, S.L.; Miller, R.B.; Swenson, N.G.; 
Wiemann, M.C.; Chave, J., (2009). Towards a worldwide 
wood economics spectrum (Version 5, p. 2047488 bytes). 
Dryad. 

Zhang, C.; Chen, K.; Liu, Y.; Kovacs, J.M.; Flores-Verdugo, F.; 
Santiago, F.J.F.de., (2012). Spectral response to varying 
levels of leaf pigments collected from a degraded mangrove 
forest. J. Appl. Remote Sens., 6(1): 063501 (14 pages). 

Zhao, K.; Wulder, M.A.; Hu, T.; Bright, R.; Wu, Q.; Qin, H.; Li, 
Y.; Toman, E.; Mallick, B.; Zhang, X.; Brown, M., (2019). 
Detecting change-point, trend, and seasonality in satellite 
time series data to track abrupt changes and nonlinear 
dynamics: a bayesian ensemble algorithm. Remote Sens. 
Environ., 232(2019): 111181 (20 pages). 

Zhao, Z.; Liu, G.; Mou, N.; Xie, Y.; Xu, Z.; Li, Y., (2018). 
Assessment of carbon storage and its influencing factors 
in Qinghai-Tibet Plateau. Sustainability. 10(6): 1864-1880 
(17 pages). 

Zhu, X.; Liu, D., (2015). Improving forest aboveground 
biomass estimation using seasonal Landsat NDVI time-
series. ISPRS J. Photogramm. Remote Sens., 102: 222-231 
(10 pages). 

https://invest.readthedocs.io/en/3.7.0/cli.html
https://invest.readthedocs.io/en/3.7.0/cli.html
https://www.sciencedirect.com/science/article/pii/S2212041621000024?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S2212041621000024?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S2212041621000024?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S2212041621000024?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S2212041621000024?via%3Dihub
https://jurnal.usk.ac.id/AIJST/article/view/5836
https://jurnal.usk.ac.id/AIJST/article/view/5836
https://jurnal.usk.ac.id/AIJST/article/view/5836
https://jurnal.usk.ac.id/AIJST/article/view/5836
https://jurnal.usk.ac.id/AIJST/article/view/5836
https://www.elsevier.com/books/essential-statistics-regression-and-econometrics/smith/978-0-12-803459-0
https://www.elsevier.com/books/essential-statistics-regression-and-econometrics/smith/978-0-12-803459-0
https://www.sciencedirect.com/science/article/abs/pii/S0251108884904662?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0251108884904662?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0251108884904662?via%3Dihub
https://ecologicalprocesses.springeropen.com/articles/10.1186/s13717-017-0088-2
https://ecologicalprocesses.springeropen.com/articles/10.1186/s13717-017-0088-2
https://ecologicalprocesses.springeropen.com/articles/10.1186/s13717-017-0088-2
https://ecologicalprocesses.springeropen.com/articles/10.1186/s13717-017-0088-2
https://cbmjournal.biomedcentral.com/articles/10.1186/s13021-018-0103-7
https://cbmjournal.biomedcentral.com/articles/10.1186/s13021-018-0103-7
https://cbmjournal.biomedcentral.com/articles/10.1186/s13021-018-0103-7
https://cbmjournal.biomedcentral.com/articles/10.1186/s13021-018-0103-7
https://cbmjournal.biomedcentral.com/articles/10.1186/s13021-018-0103-7
https://www.gjesm.net/article_696663.html
https://www.gjesm.net/article_696663.html
https://www.gjesm.net/article_696663.html
https://www.gjesm.net/article_696663.html
https://www.gjesm.net/article_696663.html
https://peraturan.bpk.go.id/Home/Download/127958/Perbup 51 Tahun 2018 tentang KKD TA 2019.pdf.
https://peraturan.bpk.go.id/Home/Download/127958/Perbup 51 Tahun 2018 tentang KKD TA 2019.pdf.
https://peraturan.bpk.go.id/Home/Download/127958/Perbup 51 Tahun 2018 tentang KKD TA 2019.pdf.
https://link.springer.com/article/10.1186/s13021-022-00210-0
https://link.springer.com/article/10.1186/s13021-022-00210-0
https://link.springer.com/article/10.1186/s13021-022-00210-0
https://link.springer.com/article/10.1186/s13021-022-00210-0
https://link.springer.com/article/10.1186/s13021-022-00210-0
https://esajournals.onlinelibrary.wiley.com/doi/10.1002/ecm.1272
https://esajournals.onlinelibrary.wiley.com/doi/10.1002/ecm.1272
https://esajournals.onlinelibrary.wiley.com/doi/10.1002/ecm.1272
https://esajournals.onlinelibrary.wiley.com/doi/10.1002/ecm.1272
https://www.sciencedirect.com/science/article/pii/S0924271620302069?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0924271620302069?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0924271620302069?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0924271620302069?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0924271620302069?via%3Dihub
https://cbmjournal.biomedcentral.com/articles/10.1186/s13021-019-0122-z
https://cbmjournal.biomedcentral.com/articles/10.1186/s13021-019-0122-z
https://cbmjournal.biomedcentral.com/articles/10.1186/s13021-019-0122-z
https://www.mdpi.com/2072-4292/10/2/172
https://www.mdpi.com/2072-4292/10/2/172
https://www.mdpi.com/2072-4292/10/2/172
https://www.mdpi.com/2072-4292/10/2/172
https://www.mdpi.com/2072-4292/10/2/172
https://www.mdpi.com/2072-4292/10/2/172
https://www.mdpi.com/2072-4292/14/13/3164
https://www.mdpi.com/2072-4292/14/13/3164
https://www.mdpi.com/2072-4292/14/13/3164
https://www.mdpi.com/2072-4292/14/13/3164
https://www.mdpi.com/2072-4292/14/13/3164
https://link.springer.com/article/10.1007/s11027-021-09937-6
https://link.springer.com/article/10.1007/s11027-021-09937-6
https://link.springer.com/article/10.1007/s11027-021-09937-6
https://link.springer.com/article/10.1007/s11027-021-09937-6
https://link.springer.com/article/10.1007/s11027-021-09937-6
https://link.springer.com/article/10.1007/s11027-021-09937-6
https://core.ac.uk/download/pdf/303709592.pdf
https://core.ac.uk/download/pdf/303709592.pdf
https://core.ac.uk/download/pdf/303709592.pdf
https://core.ac.uk/download/pdf/303709592.pdf
https://datadryad.org/stash/dataset/doi:10.5061/dryad.234
https://datadryad.org/stash/dataset/doi:10.5061/dryad.234
https://datadryad.org/stash/dataset/doi:10.5061/dryad.234
https://datadryad.org/stash/dataset/doi:10.5061/dryad.234
https://datadryad.org/stash/dataset/doi:10.5061/dryad.234
https://www.spiedigitallibrary.org/journals/journal-of-applied-remote-sensing/volume-6/issue-01/063501/Spectral-response-to-varying-levels-of-leaf-pigments-collected-from/10.1117/1.JRS.6.063501.full?SSO=1
https://www.spiedigitallibrary.org/journals/journal-of-applied-remote-sensing/volume-6/issue-01/063501/Spectral-response-to-varying-levels-of-leaf-pigments-collected-from/10.1117/1.JRS.6.063501.full?SSO=1
https://www.spiedigitallibrary.org/journals/journal-of-applied-remote-sensing/volume-6/issue-01/063501/Spectral-response-to-varying-levels-of-leaf-pigments-collected-from/10.1117/1.JRS.6.063501.full?SSO=1
https://www.spiedigitallibrary.org/journals/journal-of-applied-remote-sensing/volume-6/issue-01/063501/Spectral-response-to-varying-levels-of-leaf-pigments-collected-from/10.1117/1.JRS.6.063501.full?SSO=1
https://www.sciencedirect.com/science/article/pii/S0034425719301853?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0034425719301853?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0034425719301853?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0034425719301853?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0034425719301853?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0034425719301853?via%3Dihub
https://www.mdpi.com/2071-1050/10/6/1864
https://www.mdpi.com/2071-1050/10/6/1864
https://www.mdpi.com/2071-1050/10/6/1864
https://www.mdpi.com/2071-1050/10/6/1864
https://www.sciencedirect.com/science/article/abs/pii/S0924271614002202?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0924271614002202?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0924271614002202?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0924271614002202?via%3Dihub


266

A.D. Malik et al.

AUTHOR (S) BIOSKETCHES

Malik, A.D., M.Sc., Assistant Professor, Center for Environment and Sustainability Science, Universitas Padjadjaran, Bandung, West 
Java, Indonesia.
 Email: annas12001@mail.unpad.ac.id
 ORCID: 0000-0003-0588-387X
 Web of Science ResearcherID: HZL-2698-2023
 Scopus Author ID: 57683705500
 Homepage: https://cess.unpad.ac.id/easia_annas/

Arief, M.C.W., Ph.D., Associate Professor, Department of Fisheries, Faculty of Fisheries and Marine Science, Universitas Padjadjaran, 
Sumedang, West Java, Indonesia.
 Email: mochamad.candra@unpad.ac.id
 ORCID:  0000-0003-3077-5934
 Web of Science ResearcherID: HZL-4715-2023
 Scopus Author ID: 56469720200
 Homepage: https://fpik.unpad.ac.id/en/program-studi-perikanan/

Withaningsih, S., Ph.D., Associate Professor, Sustainability Science Masters Study Program, Graduate School, Universitas Padjadjaran, 
West Java, Indonesia.
 Email: susanti.withaningsih@unpad.ac.id
 ORCID: 0000-0002-5893-0222
 Web of Science ResearcherID: AAB-6734-2021
 Scopus Author ID: 57195276031
 Homepage:  https://pasca.unpad.ac.id/en/about-graduate-school/organizational-structure/

Parikesit, P., Ph.D., Professor, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumed-
ang, West Java, Indonesia.
 Email: parikesit@unpad.ac.id
 ORCID: 0000-0001-8214-7126
 Web of Science ResearcherID: AAC-9331-2021
 Scopus Author ID: 55934491300
Homepage: https://www.biologi-unpad.ac.id/dosen/

HOW TO CITE THIS ARTICLE

Malik, A.D.; Arief, M.C.W.; Withaningsih, S.; Parikesit, P., (2024). Modeling regional aboveground carbon 
stock dynamics affected by land use and land cover changes.  Global J. Environ. Sci. Manage., 10(1): 245-266.

DOI: 10.22034/gjesm.2024.01.16

URL: https://www.gjesm.net/article_704982.html

https://cess.unpad.ac.id/easia_annas/
https://fpik.unpad.ac.id/en/program-studi-perikanan/
https://pasca.unpad.ac.id/en/about-graduate-school/organizational-structure/
https://www.biologi-unpad.ac.id/dosen/
https://doi.org/10.22034/gjesm.2024.01.16

	Modeling regional aboveground carbon stock dynamics affected by land use and land cover changes 
	Abstract
	Keywords
	INTRODUCTION 
	MATERIALS AND METHODS 
	Research site 
	Data collection and sampling design  
	Preprocessing 
	LULC classification 
	Vegetation index identification 
	Biomass and Carbon Stock Measurement 
	InVEST carbon storage model 

	RESULTS AND DISCUSSION 
	Land use and land cover changes 
	Vegetation index in the study area 
	Extrapolation of field carbon inventory data to the landscape scale 
	Spatial distribution of carbon stocks 
	The effect of land use and land cover changes on carbon stocks 

	CONCLUSION 
	AUTHOR CONTRIBUTIONS 
	ACKNOWLEDGEMENT
	CONFLICT OF INTEREST 
	OPEN ACCESS 
	PUBLISHER’S NOTE 
	ABBREVIATIONS 
	REFERENCES


