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BACKGROUND AND OBJECTIVES: Elemental status is associated with the biochemical processes 
occurring in the body. Beef, consumed worldwide, is an excellent source of iron in terms of quantity 
and bioavailability, providing up to 18 percent of the daily requirement. The level of iron in muscle 
tissue affects beef quality. Current methods used to assess iron content in cattle muscles are 
laborious and complex. Accordingly, the current study aimed to develop a fast and simple method to 
assess the elemental status of animals in vivo and in a minimally invasive way based on an effective 
model for iron-level prediction by using blood-analysis results toward ecological well-being. This 
method can overcome the shortcomings of currently used approaches.
METHODS: Samples of diaphragmatic muscle weighing 100 grams, as well as blood samples, were 
obtained from Hereford cattle bred under typical conditions of an industrial complex in the south 
of Western Siberia, Russia. Elemental analysis was performed by atomic absorption method with 
electrothermal atomization. Regression analysis was conducted to estimate the relationships 
between iron level in the muscle tissue of Hereford cattle and independent values (blood 
parameters). An optimum model for predicting the iron level was established. The coefficients of 
regression models were calculated using the least squares method, and the values of the dependent 
variable corresponded with the Gaussian ones. A high correlation existed between independent 
variables.  
FINDINGS: An optimum model for predicting the iron level in the muscle tissue of Hereford cattle 
was established. It contained three predictors, namely, number of erythrocytes, color index, and 
globulin, as a result of selection based on internal and external-quality criteria. The model meets 
the necessary assumptions: the residuals are normally distributed, no autocorrelations exist, and 
the observations are influential. Furthermore, no signs of multicollinearity exist between the main 
effects of the model (variance-inflation factor = 1.2–1.7).
CONCLUSION: The model can be used for the intravital analysis of iron level in the muscle tissue 
of cattle. In contrast to currently used methods, the approach proposed can be used for intravital 
analysis of the level of iron in muscle tissue, which is the most important advantage of the developed 
approach. The results can be used in ecology to assess ecological well-being and determine 
the allowable load of iron in animals. For veterinary medicine, the resulting model enables the 
evaluation of the iron level in the muscle tissue of Hereford cattle during their lifetime. Studying 
the effect of different factors on meat quality may allow to decrease or avoid useless measures 
used in farming, such as the excessive use of feed additives. In turn, these measures can decrease 
resource exploitation and increase farming productivity. Therefore, the results can guide the further 
development of sustainable farming.
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INTRODUCTION
In the body of adult animals, the average 

concentration of iron (Fe) is 0.005 percent (%) 
–0.006% in natural humidity. Most iron is in the 
form of organic compounds that can be divided into 
two groups: porphyrin (heme iron) (70%–75%) and 
nonheme iron (25%–30%). Hemic iron is represented 
by hemoglobin, myoglobin, and heme-containing 
enzymes (cytochromes, cytochrome oxidase, 
catalase, and peroxidase). Nonheme iron comprises 
transferrin, ferritin, hemosiderin, and some iron 
proteinates, including ferroflavoprotein (Diniz et 
al., 2019). This element involves many biochemical 
processes: oxygen transport, blood production, energy 
metabolism, immune functions, and many others 
(Diniz et al., 2016; Kupczyński et al., 2017). According 
to a meta-analysis (Institute of Medicine, 2001), the 
median dietary intake of iron is approximately 16–18 
milligrams per day (mg/day) for men and 12 mg/day 
for women, whereas the tolerable upper intake level 
for adults is 45 mg/day. Excessive intake of iron has 
a harmful effect and causes symptoms of poisoning, 
despite its crucial role in living organisms (Institute of 
Medicine, 2001; Khaleghnia et al., 2021; Garmyn et 
al., 2011). Excessive iron has various adverse effects, 
including gastrointestinal and cardiovascular diseases 
caused by oxidative stress (Institute of Medicine, 
2001; Geissler and Singh, 2011). Moreover, iron 
content in food usually does not exceed 5 milligrams 
per 100 grams (mg/100 g) (Table 1), so the problem 

owing to excessive iron consumption with food is not 
relevant in most cases. Different types of meat are 
the main source of iron for human population. Thus, 
the content of iron (and other elements) in different 
types of meat, as well as other types of food, should 
be controlled to solve several tasks. These tasks 
include regulating human diet, estimating the effect 
of different factors on iron content in food, and 
avoiding excess of iron and other metals in food 
(Table 1). 

Iron content in beef 
Beef, consumed worldwide, is an excellent source of 

iron in terms of quantity and bioavailability because 
iron content in beef exceeds that in other types of 
meat, providing up to 18% of the daily requirement 
(Valenzuela et al., 2009; Duan et al., 2012; Mateescu, 
2014). Recent studies have shown that muscle iron 
content can affect beef-quality parameters. Iron 
content in meat including beef is associated with 
flavor and juiciness (Mateescu et al., 2013a), meat 
structure (Kim et al., 2010), palatability (Garmyn 
et al., 2011), red color intensity, and lipid oxidation 
(Purohit et al., 2015). Monounsaturated fatty acid 
levels are positively associated with semitendinosus 
iron content in crossbreeds of beef cattle, whereas 
cholesterol and polyunsaturated fatty acid levels 
are negatively correlated (Ahlberg et al., 2014). 
Molecular mechanisms of the effect of iron and 
other mineral contents on different gene expression, 

Table 1: Summary of the studies on iron content in different type of food 
 

Subject of the study  Summary  Reference 
Raw and cooked red  The effect of different factors on the analysis of iron accuracy is studied.  Lombardi‐Boccia et al., 

2002
Beef meat and viscera  Bovine cuts of meat have a low variation in total Fe, and heme Fe comprises more 

than 60% of the total Fe.  Valenzuela et al., 2009 

Soil, pasture 
sward, and blood plasma 
of extensive reared bulls 

No relationships exist among iron soil, forage, and blood concentration in beef 
cattle.  Pavlík et al., 2013 

Rice, wheat, or corn‐
containing products.  A novel method for iron extraction and determination is proposed.  Niedzielski et al., 2014 

Fish, shrimp, and prawn. A modified heme‐iron‐extraction method has been proposed. It reveals the 
underestimation of previous analyses of iron content in seafood.  Wheal, et al., 2016 

Calf blood 
The effects of feeding protein–iron complex on productive performance and 
indicators of calf metabolism are studied. Low doses of iron in diet positively affect 
calf metabolism parameters. 

Kupczyński et al., 2017 

Paste from poultry and 
cattle bone 

The potential role of bone paste as a source of minerals in the meat industry is 
demonstrated.  Kakimov et al., 2021 

Beef  Metal content (including iron) in beef samples from different locations is studied.  Sabow et al., 2021 

Reindeer meat  A meta‐analysis of reindeer meat samples reveals significant differences in iron 
content among meat from different regions  Andronov et al., 2022 

 
   

Table 1: Summary of the studies on iron content in different type of food
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which in turn affect meat quality, are considered in 
previous works (Diniz et al., 2019; Mateescu et al., 
2013b). Iron may affect the expression of various 
genes through different mechanisms. Conversely, 
some genes may affect iron content in muscle 
tissues, which may be used to regulate iron content 
in meat in the future (Mateescu et al., 2013b). 
Thus, iron content is one of the key characteristics 
affecting meat quality. The technique for assessing 
the interior by the elemental status of animals by 
blood parameters has yet to become widespread in 
agricultural production, even though the elemental 
status is associated with the biochemical processes 
occurring in the body (Kupczyński et al., 2017; 
Diniz et al., 2019). This technique is due to the 
high financial costs and laboriousness of studying 
the chemical composition of animal organs and 
tissues (Miroshnikov et al., 2019; Miroshnikov et 
al., 2020). Currently used approaches to determine 
metal (including iron) content in different types of 
meat are based on sample preparation involving 
stages of meat sample freezing, drying, and metal 
extraction with different reagents. Further analysis 
of the obtained extracts through atomic absorption 
spectroscopy (AAS) and inductively coupled plasma 
mass spectrometry methods or other methods is 
also needed. This scheme is used to analyze element 
content in different types of food (Table 1), as well 
as animal hair (Miroshnikov et al., 2019; Miroshnikov 
et al., 2020). Currently, this approach may be 
considered as the main one for meat analysis (King et 
al., 2023). Depending on the sample properties and 
the aim of the analysis, all stages of the analysis may 
be optimized, for example, more effective reagents 
for metal extraction may be used (King et al., 2023). 
However, it does not significantly decrease the time 
and labor consumption to determine the elemental 
status of meat. Thus, the main shortcomings of 
currently used techniques for analyzing iron (and 
other elements) in meat is complexity, presence 
of several stages, and high costs. Notably, another 
disadvantage of currently used methods to determine 
iron content in meat is the impossibility of intravital 
assessment of iron content, which in turn does not 
allow correct iron content in cattle meat before 
slaughter. Thus, the development of fast and simple 
approaches, which may enable the determination of 
iron content in meat including that in beef, is an urgent 
task and investigation in this area. Animal blood 

is an easily accessible, simple, and easy-to-select 
biological material. Furthermore, hematological 
and biochemical analyses do not require expensive 
laboratory equipment, are fast in sample preparation 
and execution, and do not require high financial costs. 
Therefore, this biomaterial is well suited for the role 
of an in vivo indicator of the content of heavy metals 
in the organs and tissues of animals. Furthermore, 
no data exist on robust relationships between blood-
analysis results and iron content in meat, which 
does not allow using these data for iron-content 
estimation. The current study aimed to establish an 
optimum and effective model for predicting iron level 
in the muscle tissue of Hereford cattle, which enabled 
the assessment of the elemental status of animals 
in vivo and in a minimally invasive way toward food 
health consumption and ecological well-being. 
Notwithstanding the importance of other elements’ 
contents in meat that determine food quality, It 
was focused on iron because it is the main element 
affecting the nutritional value of food, and beef is one 
the main sources of iron for the human population. 
This study was performed in in the Novosibirsk region 
of Russia in 2022–2023.

MATERIALS AND METHODS
The study was approved by the expert commission 

of the Federal State State-Funded Educational 
Institution of Higher Education “Novosibirsk State 
Agricultural University.” Hereford cattle (n=30) bred 
in the south of Western Siberia (Russia) were studied. 
The animals were kept under standard conditions of 
an industrial complex in compliance with veterinary 
and zootechnical requirements following the law and 
under normal conditions for each species and breed. 
Feeding was performed with a typical complete feed, 
considering the age, live weight, and direction of 
animal productivity.

Sample selection
The animals were slaughtered through the current 

requirements, technological instructions, and legal 
documents in force on the territory of the Russian 
Federation. Before slaughter, studies on their mucous 
membranes, skin, and derivatives were conducted. 
At the time of slaughter, the animals were clinically 
healthy. The animals were placed on a 12–18-hour 
preslaughter starvation diet. Organs and tissues 
were sampled immediately after the massacre; they 
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were frozen and stored at -18 degrees Celsius (°C) to 
-24  °C. Samples of skeletal muscles weighing 100 g 
were collected from the diaphragmatic muscle. Blood 
samples were collected from the jugular vein of the 
animals and stabilized with 5% sodium citrate. Blood 
samples were delivered to the laboratory within 
6–12  hours, where hematological and biochemical 
analyses was performed.

Sample preparation for analysis
A portion of muscle tissue was crushed for atomic 

absorption analysis. From a homogeneous mass, 
a sample weighing 2–5  grams was selected and 
placed in a 50 milliliter (mL) quartz cup and poured 
with 25–50 mL of ethanol, covered with filter paper, 
and left at an ambient temperature of 10–25 °C 
for 24  hours. Then, the samples were dried at low 
heat. After cooling, a solution of nitric acid (HNO3) 
(1:1) was added in small portions, and the oxidation 
reaction was monitored, preventing the rapid 
evolution of foam. After the samples reacted with 
the HNO3 nitric acid solution, their heating slowed 
to charring. Quartz cups with charred pieces were 
placed in a muffle furnace heated to 250 °C. They 
were tested, gradually raising the temperature to 
510 °C, and kept for at least 4 hours until complete 
ignition. The samples were then treated with 5 
mL of concentrated nitric acid HNO3 and 1 mL of 
perchloric acid HClO4, the lids were covered, and 
the solution was heated strongly with fire until the 
answer became clear. After removing the caps, the 
samples were evaporated to a dry residue, which 
was treated with 5 mL of hydrochloric acid solution 
(1:1) and evaporated to wet salts. Then, the resulting 
sample was transferred into a container with 10 mL 
volume. The resulting working solution was analyzed 
on an MGA-1000 atomic absorption spectrometer 
(Lumeks LLC (Limited Liability Company)), Russia). 
The hematological parameters determined were the 
level of erythrocytes, leukocytes, and hemoglobin. 
An automatic hematology analyzer PCE-90VET 
(Hight Technology Inc, USA) was used. Biochemical 
parameters were determined using photometric 
methods on a Photometer-5010 semiautomatic 
biochemical analyzer (Robert Riele GmbH and Co KG, 
Germany) using reagents manufactured by Vector-
Best CJSC (Closed Joint-Stock Company) and Olvex 
Diagnosticum LLC. Hemoglobin level was assessed at 
a wavelength of 540 nm by the Hemichromes method 

using a Hemoglobin-Novo reagent kit manufactured 
by Vector-Best CJSC. Hemoglobin concentration was 
proportional to the hemichrome color intensity.

Statistical analysis
The original data were processed using the 

statistical programming language R. Model-fitting 
conditions were tested according to the exploratory 
data analysis protocol (Zuur et al., 2010). Potential 
outliers were analyzed using the Grubbs test 
(Adikaram et al., 2015). They determined whether 
the data distributions are Gaussian using the Shapiro–
Wilk test (Razali et al., 2011; da Silva Diniz et al., 
2020). The correlation coefficient between variables 
was calculated using the Spearman test (Xiao, 2019). 
Multicollinearity was assessed by calculating the 
variance-inflation coefficient for each parameter 
(Zuur et al., 2010) and by using a graphical method 
with the scatterplot matrix of regression-model 
variables. The model coefficients were calculated 
by the least squares method. Multiple comparisons 
of influential observations were made by Bonferroni 
correction (Aickin and Gensler, 1996). The conditions 
for the independence of the model’s residuals were 
tested using the Durbin–Watson test (Chen, 2016). 

RESULTS AND DISCUSSION
Model fitting

According to the methodology, regression analysis 
began with the creation of a complete model 
containing all predictors by using Eq. 1 (Zuur et al., 
2010). 

y~x1+x2+x3+x4+x5+x6+x7+x8+x9+x10+x11+x12 �  (1)

Where, y is the response variable, and x1–x12 are 
independent variables.

For convenience, the independent variables are 
renamed. According to Table 2, the dependent 
variable (y) is the muscles’ level of iron in milligram 
per kilogram (mg/kg).

An essential step in exploratory analysis is the 
selection of regression models and the choice of 
predictors to assess multicollinearity. The models 
are unstable in the presence of multicollinearity 
in estimating coefficients. Consequently, analyzing 
individual factors’ contribution to the response 
variable’s variance is challenging. A paradox may arise 
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when the coefficients of the regression model are 
statistically insignificant. At the same time, the model 
as a whole is significant (the null hypothesis tested 
by F-statistics about the equality of all coefficients 
to zero is rejected). Accordingly, the values of the 
Spearman correlation coefficient were calculated 
and a correlation matrix and scatterplots were built 
to assess the linear relationship between variables 
(Figs. 1 and 2). The calculated correlation coefficients 
are in the lower triangle on a red background, and 
the significance levels for these coefficients are in 
the upper triangle. Analysis showed a relatively 
large number of relationships among variables, 
many of which are physiologically determined. For 
example, the color index of blood reflects the degree 
of saturation of red blood cells with hemoglobin. It 
represents the ratio of red blood cells and hemoglobin 
in blood. Likewise, the concentration of iron in blood is 
related to the number of red blood cells, and the total 
protein level is associated with the concentration of 
globulins, one of its main fractions. Naturally, these 
indicators have a high correlation. In other cases, the 
connection could be more precise. For example, a 
positive relationship between the level of iron in the 
blood and the concentration of uric acid may be due 
to the possibility of creating complexes from them, 
thereby increasing the antioxidant activity of the 
latter (Davies et al., 1986).

Another complex way to assess the degree of 

multicollinearity of a complex of predictors is to 
calculate the variance-inflation factor (VIF). A higher 
VIF for each predictor corresponds with a closer 
linear relationship with the rest of the independent 
variables. The VIF values of predictor dispersion were 
calculated for all candidate models (Table 3).

The example of the general model clearly shows 
the high multicollinearity of the model parameters, 
especially the protein and its constituent fractions 
of globulins and albumin. The correlation is less 
pronounced in the value of the color index of blood, 
calculated from the number of erythrocytes and 
hemoglobin. Including a complete set of predictors 
in the model leads to duplication of the influence 
of independent variables on the response value and 
creates excessive information noise. The rest of the 
indicators have a relatively low VIF weight, so the 
estimate of the remaining coefficients should be 
statistically significant.

Regression-model selection
Table 4 gives estimates of the coefficients of 

the complete model containing all independent 
variables. Consequently, a predictable situation is 
observed when, owing to the high multicollinearity, 
the estimates of all coefficients of the complete 
linear regression model turn out to be statistically 
insignificant according to the t-test. The F-test also 
indicates the statistical significance of the entire 

Table 2: Designation and interpretation of independent variables  
used to select regression models 

 
Indicator  Unit of measure  Variable value in the model 

Fe level in blood  millimoles per liter (mmol/L)  x1 

Leukocytes  ×109 pieces (pcs.)  x2 

Erythrocytes  ×1012 pcs.  x3 

Hemoglobin  gram per liter (g/L)  x4 

Erythrocyte sedimentation rate  millimeters per hour (mm/h)  x5 

Color indicator of blood    x6 

Protein  g/L  x7 

Albumin  g/L  x8 

Globulin  g/L  x9 

Urea  mmol/L  x10 

Uric acid  micromole per liter (µmol/L)  x11 

Cholesterol  mmol/L  x12 

 
   

Table 2: Designation and interpretation of independent variables used to select regression models
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model. One of the most effective ways to reduce 
multicollinearity is to select an informative set of 
predictors.

The optimum structure model with tuned 
parameters should provide the “best” value of a 

particular quality criterion. However, with many 
variables, achieving the optimum value for all quality 
criteria is almost impossible, so several suboptimal 
candidate models are created for the subsequent 
selection of the working model. Stepwise regression 

 

 
Fig. 1: Correlation matrix of regression‐model variables 

   

Fig. 1: Correlation matrix of regression-model variables
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Fig. 2: Matrix of scatterplots of regression‐model variables 

   

Fig. 2: Matrix of scatterplots of regression-model variables

Table 3: Dispersion of inflation‐factor values for regression models' coefficients to assess iron level in muscle tissue 
 

Predictor  Complete 
model  y~x3+x4+x6+x7+x12  y~x3+x4+x6+x8+x9+x12  y~x3+x6+x9 

x1  2.1  –  –  – 

x2  4.1  –  –  – 

x3  27.2  13.8  15.5  1.7 

x4  34.2  14.5  18.1  – 

x5  2.3  –  –  – 

x6  37.9  21  22.4  1.7 

x7  631.5  1.8  –  – 

x8  156.6  –  2.8  – 

x9  697.5  –  2.1  1.2 

x10  3.4  –  –  – 

x11  1.8  –  –  – 

x12  1.9  1.2  1.5  – 
 
   

Table 3: Dispersion of inflation-factor values for regression models’ coefficients to assess iron level in muscle tissue
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analysis is performed using a combined algorithm 
“stepwise forward and backward selection”. In the first 
step, the best one, according to the Akaike information 
criterion, is selected from all predictors. Then, the 
following variable with the optimum solution with 
the first coefficient of the model is set. The algorithm 
stops when the extremum of the criterion value is 
reached. Afterwards, the exclusion stage replaces the 
location of the inclusion of variables. In this case, all 
combinations of variables are sorted out. Then, a less 
informative predictor is excluded from the model by 
the value of the specified quality criterion, and so on, 
until the criterion extremum is reached. The model 

obtained by this method is presented in Table 5. 
Compared with the entire model, the estimate of the 
standard deviation of the residuals and the F-statistic 
is significantly lower, showing the superiority of this 
model over the general one.

A more illustrative method for selecting the optimum 
regression model is to sequentially build all possible 
regression models with an assessment of the quality 
of each of them. The method’s main disadvantage is 
the need to use significant computing power. In this 
case, when using 12 independent variables, 4096 
regression models were built. Consequently, the best 
models were ranked according to the main internal-

Table 4: Parameters for estimating the coefficients of the complete model to predict the iron level in muscle tissue from blood parameters 
 

Coefficient notation  Odds 
estimates  Coefficient SE  t‐statistic  Pt* 

Int.  ‐25.655  25.605  ‐1.002  0.338 

x1  ‐2.483  45.661  ‐0.054  0.958 

x2  ‐0.181  0.345  ‐0.525  0.61 

x3  3.166  2.865  1.105  0.293 

x4  ‐0.094  0.179  ‐0.523  0.611 

x5  0.523  2.608  0.2  0.845 

x6  17.562  15.91  1.104  0.293 

x7  ‐0.573  1.308  ‐0.438  0.67 

x8  0.888  1.265  0.702  0.497 

x9  0.823  1.288  0.639  0.536 

x10  0.54  0.903  0.598  0.562 

x11  ‐0.001  0.015  ‐0.09  0.93 

x12  ‐1.856  1.66  ‐1.118  0.288 

RSE2 – 4.95; F‐statistic – 3.98, P = 0.015. 

Here and below: 1Int. Is the free term of the equation; RSE2 is the estimate of the standard deviation of residuals (residual standard error); * Pt – significance 
level of t‐statistics; SE (standard Error). 
 

 
   

Table 5: Parameters for estimating the coefficients of the candidate model  
selected by the combined algorithm 

 

Coefficient notation  Odds 
estimates  Coefficient SE  t‐statistic  Pt 

Int.  ‐21.170  14.601  ‐1.450  0.165 

x3  3.555  1.830  1.943  0.069 

x4  ‐0.140  0.110  ‐1.267  0.222 

x6  21.055  10.373  2.030  0.058 

x8  0.217  0.144  1.509  0.150 

x9  0.231  0.059  3.899  0.001 

x12  ‐1.735  1.233  ‐1.407  0.180 

RSE – 4.20; F‐statistic – 10.78, P < 0.001. 

 
   

Table 4: Parameters for estimating the coefficients of the complete model to predict the iron level in muscle tissue from blood parameters

Table 5: Parameters for estimating the coefficients of the candidate model selected by the combined algorithm
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quality criteria, namely, Akaike information criterion 
(AIC) (Table 6), (Bayesian information criterion (BIC) 
(Table 7), and R2 adjusted (adj) (Table 8).

The adjusted coefficient of determination is the 
greediest; that is, a model with many parameters 
will often be preferred, even though each criterion 
considers the number of predictors in the model. 
For example, the best model for R2 adj includes five 
predictors. A more balanced approach is implemented 
using the information criteria AIC and BIC, imposing 
a “penalty” for adding new parameters. Their main 
difference is that the BIC is more sensitive to adding 
new parameters and prefers the most compact 
models. This criterion is found when analyzing Tables 
3 and 4. According to the AIC, the best model contains 
five coefficients, and the following has 3. Moreover, 
according to the BIC, the best model includes three 

independent variables. Although the value of the 
standard deviation of the residuals is slightly higher 
than that of the previous model, the value of the 
F-statistic is higher (Table 9).

Thus, for further analysis, three models can be 
selected (the best according to internal-quality 
criteria), and the whole model with all coefficients 
can be left for comparison. The most compact 
models with minimal multicollinearity are worth 
giving preference. Therefore, if it is considered  the 
selected candidate models based on the VIF (Table 2), 
multicollinearity would be absent only in the model 
with three predictors (the best according to the BIC). 
When using the Mallow test (Fig. 3b), the best model 
has the same variables as the Bayesian information 
test (Fig. 3a).

The above estimates of the quality of fit of the 

Table 6: Ranking of the best regression models for predicting the level of iron in muscle tissue  
(mg/kg) according to the value of the Akaike information criterion 

 
Model equation  df  p  SSE  MSE  R2  R2

adj  AIC  BIC 

y ~ 1+x3+x4+x6+x7+x12  18  5  310.281  17.238  0.785  0.725  143.535  159.946 

y ~ 1+x3+x6+x9  20  3  372.917  18.646  0.741  0.702  143.948  158.003 

y ~ 1+x3+x6+x9+x12  19  4  348.338  18.334  0.758  0.707  144.312  159.545 

y ~ 1+x3+x6+x7+x12  19  4  350.013  18.422  0.757  0.706  144.427  159.66 

y ~ 1+x2+x3+x6+x7+x10+x12  17  6  296.436  17.437  0.794  0.722  144.44  162.028 
       Here and below: df is degrees of freedom, p is the number of model coefficients, SSE is the sum of squared errors, and MSE is the mean‐squared error. 
   

Table 6: Ranking of the best regression models for predicting the level of iron in muscle tissue (mg/kg) according to the value of the Akaike 
information criterion

 
Table 7: Ranking of the best regression models for predicting the level of iron in muscle tissue  

(mg/kg) according to the value of the Bayesian information criterion 
 

Model equation  df  p  SSE  MSE  R2  R2
adj  AIC  BIC 

y ~ 1+x3+x6+x9  20  3  372.92  18.65  0.74  0.7  143.95  158 

y ~ 1+x7+x12  21  2  436.75  20.8  0.7  0.67  145.74  158.62 

y ~ 1+x4+x9  21  2  439.64  20.94  0.7  0.67  145.9  158.78 

y ~ 1+x7  22  1  509.75  23.17  0.65  0.63  147.45  159.15 

y ~ 1+x4+x7+x12  20  3  392.96  19.65  0.73  0.69  145.21  159.26 
 

   

Table 7: Ranking of the best regression models for predicting the level of iron in muscle tissue (mg/kg) according to the value of the Bayesian 
information criterion

 
Table 8: Ranking of the best regression models for predicting the level of iron in muscle tissue  

(mg/kg) by the value of the adjusted coefficient of determination 
 

Model equation  df  p*  SSE  MSE  R2  R2
adj  AIC  BIC 

y ~ 1+x3+x4+x6+x7+x12  18  5  310.28  17.24  0.79  0.73  143.54  159.95 

y ~ 1+x2+x3+x6+x7+x10+x12  17  6  296.44  17.44  0.79  0.72  144.44  162.03 

y ~ 1+x3+x4+x6+x7+x8+x9+x12  16  7  281.01  17.56  0.81  0.72  145.16  163.92 

y ~ 1+x3+x4+x6+x8+x9+x12  17  6  299.91  17.64  0.79  0.72  144.72  162.31 

y ~ 1+x3+x4+x6+x7+x10+x12  17  6  303.93  17.88  0.79  0.72  145.04  162.63 
 
   

Table 8: Ranking of the best regression models for predicting the level of iron in muscle tissue (mg/kg) by the value of the adjusted coef-
ficient of determination
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regression model refer to “internal” criteria because 
their calculations are based on the same data used 
to calculate the model. Therefore, estimates often 
provide biased measures of the actual function of the 
process, which are based on sampled empirical values 
of small samples. Unbiased forecasts can be obtained 
only by applying external-quality criteria. They are 
also effective against model overcomplication and 
allow model selection with an optimum number of 
parameters. The most informative external criterion 
is cross-validation (CV). The prediction error of the 
response variable is estimated during the course 
of multiple random splitting of the initial sample 
into training and testing. Some of them are based 

on leave-one-out CV: n (sets) of regression models 
are fitted on (n–1) sample values, and the excluded 
observation is used each time to calculate the 
prediction error. Visualization of the best candidate 
models, divided into three blocks (k=3) by the CV 
method, shows that the regression lines of the model 
for BIC and Mallows’s Cp (Cp) (Fig. 4a) provide a more 
accurate forecast relative to the others (Fig. 4b and 
c), and the complete model (Fig. 4d) is the worst fit to 
predict the level of iron in muscle tissue.

The CV error for the model has decreased by more 
than 110 times relative to the overall model selected 
based on the BIC. This error is also 26% better than 
the closest model selected based on the adjusted 

Table 9: Parameters for estimating the coefficients of the candidate model to predict  
the iron level in muscle tissue (mg/kg) from blood parameters 

 

Coefficient notation  Odds 
estimates  Coefficient SE  t‐statistic  Pt

* 

Int.  ‐9.583  6.925  ‐1.384  0.182 

x3  1.551  0.631  2.456  0.023 

x6  11.503  2.966  3.878  0.001 

x9  0.212  0.046  4.570  <0.001 

RSE2 – 4.318; F‐statistic – 19.1, P < 0.001. 
 
   

Table 9: Parameters for estimating the coefficients of the candidate model to predict the iron level in muscle tissue (mg/kg) from blood 
parameters

 
Fig. 3: Ranking models for predicting iron level in muscle tissue by using the  

Bayesian information criterion (a) and the Mallow criterion (b) 
   

Fig. 3: Ranking models for predicting iron level in muscle tissue by using the Bayesian information criterion (a) and the Mallow criterion (b)



843

Global J. Environ. Sci. Manage., 9(4): 833-850, Autumn 2023

determination coefficient and the Akaike information 
criterion (Table 10).

Thus, the optimum model includes three predictors 
(x3, x6, x9).

Verifying assumptions about model residuals
Verifying the assumptions regarding the model’s 

 

Fig. 4: Visualization of candidate models for assessing the level of iron in muscles by the  

cross‐validation method: BIC and Cp (a), AIC and ACD (b), combined algorithm (c), and complete model 
(d) 

   

residuals is necessary to determine the adequacy of 
applying the least squares method. Using graphical 
methods, one can evaluate the distribution normality 
of residuals and the dependence on predicted 
values. (Figs. 5 and 6). Thus, the probability density 
curve of the residual distribution practically repeats 
the Gaussian distribution’s confidence region (Fig. 
5). The quantile plot of the standardized residuals 

Fig. 4: Visualization of candidate models for assessing the level of iron in muscles by the cross-validation method: BIC and Cp (a), AIC and 
ACD (b), combined algorithm (c), and complete model (d)

Table 10: Estimated error in the cross‐validation of regression models for predicting the level  
of iron in muscle tissue (mg/kg) 

 
Model Formula  SS  df  MS 

y ~ 1+x3+x6+x9  561  24  23 

y ~ 1+x3+x4+x6+x7+x12  756  24  31 

y ~ 1+x3+x4+x6+x7+x8+x9+x12  2360  24  98 

 y ~ 1+x2+x3+x4+x5+x6+x7+x8+x9+x10+x11+x12  62126  24  2589 

Note: SS is the sum of squares, MS is the mean square. 
 
   

Table 10: Estimated error in the cross-validation of regression models for predicting the level of iron in muscle tissue (mg/kg)
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Fig. 5: Distribution of residuals of the regression model to assess the level of iron  

(mg/kg) in muscle tissue 

   

 
Fig. 6: Residuals versus response (a), quantile plot (b), square root of  
standardized residuals versus response (c), and Cook's distances (d) 

   

Fig. 5: Distribution of residuals of the regression model to assess the level of iron (mg/kg) in muscle tissue

Fig. 6: Residuals versus response (a), quantile plot (b), square root of standardized residuals versus response (c), and Cook’s distances (d)
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and theoretically expected quantiles show that the 
values are distributed relatively normally (Fig. 6, top 
left field). This plot is also confirmed by the formal 
Shapiro–Wilk test (W = 1; P = 1).

The model’s dispersion of residuals versus predicted 
values is shown in Fig. 6a, indicating the homogeneity 
of the variance. A smoothing line is plotted in red, 
which facilitates the analysis. It is close to a horizontal 
line, so the condition for uniform dispersion of 
residuals is satisfied. Fig. 6c also indicates the variance 
homogeneity of the residuals, the y-axis shows the 
square root of the standardized residuals, which are 
standardized by dividing each residual by its standard 
deviation. The standardization procedure improves 
the heterogeneity detection of their variance. The 
smoothing line, in this case, is also close to horizontal. 
Fig. 6d is built to identify “influential” observations. 
The visualized Cook’s distance values show that three 
comments (highlighted by ordinal values) require 
careful consideration. First, student-t residuals are 
compared with the theoretically expected values of 
the t-distribution to ensure that they are not outliers. 
The significance level is calculated considering the 

Bonferroni correction for the observation with 
maximum deviation. In the selected model, the deal 
with the maximum deviation is 2.42. Its adjusted 
level of significance (P) is 0.62. This value is similar 
to the theoretically expected one, so none of the 
potentially influential observations is an outlier. The 
values of the criterion d=1.92 are obtained, and 
they correspond with an autocorrelation coefficient 
of 0.025 (p=0.67) owing to the Durbin–Watson 
test. Such a high significance level of the statistical 
error of the first kind indicates the absence of 
autocorrelation. Therefore, the condition for the 
independence of the model’s residuals is satisfied. 
As a result of the selection and evaluation of the 
quality of models, the best predictive model, 
taking into account internal and external-quality 
criteria, contains three predictors: the number of 
erythrocytes, color index, and globulin. To predict 
the level of iron in the muscle tissue of cattle, it is 
proposed to use Eq. 2 which is made by the author 
based on data shown in Table 9.

y = -9,583 + 1,551 × RC + 11,503 × CCR + 0,212 × G (2)

 
 

Fig. 7: Model of the expected and actual level of iron in the muscle tissue of cattle 
 

Fig. 7: Model of the expected and actual level of iron in the muscle tissue of cattle
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Where, y is the concentration of iron in muscle 
tissue (mg/kg), RC is the red count, CCR is the cell–
color ratio, and G is globulin.

Visualization of the resulting model is displayed as 
a scatterplot of predicted and observed values (Fig. 
7). The results obtained show a sufficient level of 
approximation and the absence of outliers.

Advantages of the proposed approach
A fast, simple, and reliable method of predicting 

iron content in cattle meat was proposed. The 
method is based on blood analyses according to 
commonly used methods and further use of the 
results obtained to calculate iron content in cattle 
meat. Notably, many studies have focused on the 
development of methods for meat-quality analysis 
because currently used methods are characterized 
by high consumption of time and labor (King et al., 
2023). Additionally, in literature, no data are available 
on the use of blood analysis to predict meat quality. 
Most studies have focused on the use of different 
spectroscopic, biochemical, and optical methods 
that allow fast and nondestructive meat analysis to 
estimate main quality parameters without tedious 
sample preparation (Table 11).

Despite the various methods proposed, they 
cannot solve the main disadvantage of currently 
used methods, i.e., they do not allow the prediction 
of elemental status of meat before slaughter. 

Moreover, they have certain advantages on currently 
used methods as they do not require long-term 
preparation. The method developed in this work 
avoids long-term preparation and application of 
complex and expansive equipment and can be used to 
predict iron content in meat before slaughter. In turn, 
it enables the correction of the final iron content in 
meat by optimizing feed livestock and obtaining meat 
with required quality. Notably, iron-content control 
in meat (particularly beef) is one of the elements 
of so-called sustainable beef production (Purchas 
and Busboom, 2005; Broom, 2021; Hubbart et al., 
2023) because iron content is one of the key meat-
quality indicators. Thus, controlling the intravital iron 
content may be one the most effective tools to correct 
beef quality by understanding the effect of different 
factors on the final product quality, which may enable 
the development of approaches to obtain the meat 
of required quality through targeted methods of 
influence on certain meat-quality indicators. This in 
turn will allow only required methods to control food 
production and decrease the possible environmental 
impact of beef production, thereby avoiding the use 
of extensive methods to improve the quality and 
amount of meat produced, which can contribute to 
ecological well-being.

Using the method proposed, the conditions of 
cattle keeping may be regulated to improve the goal 
parameter (iron content) through a minimally invasive 

Table 11: Summary of the studies on meat quality using novel techniques 
 

Subject of the study  Method used and summary  Reference 

Chicken breast and beef 
chops 

Optomagnetic methods can be used to evaluate the spoilage of fresh beef and chicken 
meat when stored in a refrigerator.  Mileusnić et al., 2017 

Beef  The predictability of a detailed mineral profile of beef using different portable near‐
infrared spectrometers is studied. The methods can predict Fe and P contents.  Patel et al., 2020 

Different types of food 

The work summarizes the results of studies on different nondestructive spectroscopic 
and imaging techniques for food quality. The authors conclude that these techniques 
may be used for food analysis, but the commercialization of these techniques is 
prevented by the high‐cost equipment and generation of large data sets. 

Edwards et al., 2021 

Different types of meat 

The work summarizes results of studies on different techniques for meat quality 
(electronic nose, computer vision, spectroscopy, hyperspectral imaging (HSI), and 
multispectral imaging technologies). The authors conclude that future studies are 
required to enhance the accuracy, scalability, robustness, and simplicity of these 
technologies. 

Khaled et al., 2021 

Pork and beef  The review concluded that HSI and visible/near‐Infrared spectroscopy are the leading 
techniques for monitoring pork and beef quality and safety.  Sanchez et al., 2022 

Different types of meat  The work shows that different nondestructive spectroscopic and imaging techniques 
are promising for analyzing the quality of different types of meat.   Wu et al., 2022 

 

Table 11: Summary of the studies on meat quality using novel techniques
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approach (blood sampling and analysis), which is 
currently used routinely in veterinary practice. Thus, 
applying the proposed method will not include any 
special ethical implications.

Limitations of this study and further research 
directions

This study presents initial results on the 
development of the proposed method. Indeed, the 
model accuracy and the effect of different factors 
should be further studied in detail by using a large 
sample. In the present work, a comparatively small 
sample was used. Based on the results, it  cannot 
unambiguously evaluate these factors affecting 
the model performance and the limitation of its 
application. Nevertheless, the results obtained 
clearly suggest that the proposed method is 
promising for future research and may be improved 
for further commercialization. Further development 
of the method proposed also requires study of the 
mechanisms affecting relationships between blood 
parameters and iron content in muscle tissues of 
cattle, which in turn may improve the proposed 
model and avoid its shortcomings owing to factors 
that decrease model accuracy. The results showed 
only empirical patterns observed in this work but 
cannot provide an explanation for them. The iron 
amount in the diet of calves affects key blood 
parameters (Kupczyński et al., 2017). Some mutual 
effects probably determine blood parameters and 
iron content in livestock feed and muscle tissues, but 
their mechanisms should be studied. In addition to 
direct contributions to the increase in beef quality by 
regulating one of the key parameters of meat quality, 
further studies in the area of the study may be used 
as element of sustainable beef production. Given 
that the prediction of iron content cannot be used to 
directly solve most ecological problems of livestock 
farming (for example, gas emission), studying the 
effect of different factors on meat quality may allow 
to decrease or avoid useless measures used in 
farming, such as the excessive use of feed additives. 
Consequently, resource exploitation can decrease 
and farming productivity can increase.

CONCLUSION
A fast and simple method of assessing the 

elemental status of animals in vivo and in a minimally 

invasive way is developed. The method is based on 
an effective model for predicting the iron level in 
the muscle tissue of Hereford cattle by using blood-
analysis results. The coefficients of regression models 
using the least squares method and the values of 
the dependent variable corresponding with the 
Gaussian are calculated. A high correlation between 
independent variables is revealed. An optimum 
model for predicting the iron level in the muscle 
tissue of Hereford cattle was identified, containing 
three predictors: the number of erythrocytes, color 
index, and globulin as a result of selection based 
on internal and external-quality criteria. The model 
meets the necessary assumptions: the residuals are 
normally distributed, no autocorrelations exist, and 
the observations are influential. Furthermore, no 
signs of multicollinearity exist between the main 
effects of the model (VIF = 1.2–1.7). The resulting 
model can be used for the intravital analysis of 
iron level in the muscle tissue of cattle, which is an 
important advantage of the developed approach to 
currently used methods. In the future, verifying this 
model on a test sample, increasing the accuracy of 
the forecast, and continuing to train the model are 
necessary. The results can be used to assess ecological 
well-being and determine the allowable load of iron 
on animals and its transfer to human. For veterinary 
medicine, the resulting model enables the evaluation 
of the iron level in the muscle tissue of Hereford 
cattle during their lifetime. Moreover, similar studies 
must be conducted on large populations and mixed 
linear models considering random effects must be 
established. It is believed that the method proposed 
may be used for cattle and for other types of meat 
animals. Analysis of literature reveals that the article 
possesses scientific novelty as it has not been found 
work based on similar approaches. The method 
is proposed may also be the simplest and fastest 
technique among currently available methods of 
predicting the content of one the key elements in 
meat. Therefore, the method has practical significance 
for commercialization.
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