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The prediction models, response surface methodology and
adaptive neuro-fuzzy inference system are utilized in this study. This study delves into the removal
efficiency of reactive orange 16 using hydrochar derived from the Prosopis juliflora roots. Hydrochar
dose, pH, temperature, and initial reactive orange 16 concentration were studied in batch processes.
The correlation coefficients for the batch processes were found to be 0.978 and 0.9999. The results
denote that the adaptive neuro-fuzzy inference system predicted the reactive orange 16 removal
efficiency more accurately than the response surface methodology model.

Prosopis juliflora roots roots are converted into hydrochar to remove azo dye from
textile waste water. Prosopis juliflora roots roots were collected from Ramanad District, Southern
Tamil Nadu, India. The moisture content was lowered by drying for 24 hours at 103 degree celcius
in an oven with hot air. This biomass was thermally destroyed at 300 degree celcius for 15 minutes
without oxygen in an autoclave in a muffle furnace (heating rate: 5 degree celcius per minute).
As soon as it reaches room temperature, the hydrochar residue of this biomass was used for
adsorption investigations. The batch adsorption process was conducted for 6 hours in a 250 milliliter
Erlenmeyer conical flask with a 100 milliliter working volume using an orbital shaker. The pH, dosage,
concentration, and temperature are the four parameters chosen for this study to find the maximum
removal efficiency of the dye from aqueous solutions. This study validated adaptive neuro-fuzzy
inference system, an artificial neural network with a fuzzy inference system, using response surface
methodology projected experimental run with Box—Behnken method.

The adaptive neuro-fuzzy inference system model is created alongside the response
surface methodology model to compare experimental outcomes. Experimental data was evaluated
using a hybrid least square and gradient technique. Statistical and residual errors assessed
experimental and mathematical model correctness. Experimental data matched the adaptive
neuro-fuzzy inference system results. Statistical error analysis verified the model’s accuracy and
precision against experimental data.

Response surface methodology and adaptive neuro-fuzzy inference system
optimized process conditions. At pH 2, 2 gram per litre hydrochar dosage, 35 degree celcius , and a
reactive orange 16 starting concentration of 250 milligram per liter, removal effectiveness reached
86.1 percent. Adaptive neuro-fuzzy inference system predicted higher values than response surface
methodology, with batch correlation coefficients of 0.9999 and 0.9997, respectively. Mathematical
techniques can accurately estimate dye removal efficiency from aqueous solutions.
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NUMBER OF REFERENCES

NUMBER OF FIGURES NUMBER OF TABLES

*Corresponding Author:

Email: prasannk@srmist.edu.in
Phone: 091442 741 7819
ORCID: 0000-0001-7839-4503

Note: Discussion period for this manuscript open until October 1, 2023 on GJESM website at the “Show Article”.


https://www.gjesm.net/ 
https://www.gjesm.net/jufile?ar_sfile=3850578
https://www.gjesm.net/jufile?ar_sfile=3850578

Oxidation, sand filtration, electrochemical
processes, membrane filtration, and precipitation
are typical wastewater treatment methods (Gupta et
al., 2013). These technologies are ideal in removing
suspended solids; other than membrane filtration,
removing dissolved solids is difficult. However,
membrane filtration is an expensive treatment
option and this has led to the development of
unique treatment approaches (Hussein et al., 2018;
Chinwetkitvanich et al., 2000). Compared with other
approaches, one of the best ways to remove pollutants
from wastewater is by adsorption (Ghoneim et al.,
2014) as the removal effectiveness of this process is
exceptionally high. Adsorbents, such as clay, silicates,
zeolite, lime, and activated carbon, are frequently
employed. The widely held adsorbent for the removal
of hazardous contaminants is activated carbon (Crini
et al., 2006; Orshansky et al., 1997). However, the
production expense of activated carbon is its most
significant drawback. One of the most economical
methods for removing contaminants is biosorption,
which uses inactive or dead microorganisms to create
the biosorbent (Kaur et al.,2017). Many researchersin
the past have made biosorbent from waste compost,
neem seeds, moringa seeds, and agricultural biomass
(Nayagam and Prasanna, 2022). This biomass is
used in the treatment of toxic metals and dyes in
wastewater. Hydrochar is created from Prosopis
juliflora roots, which has high carbon content and
several functional groups that promote absorption
(Tranetal., 2020). The potential of hydrochar depends
on the thermal stability of the raw materials sourced
in its production. Feedstock is often separated into
two groups: wet and dry. Wet biomass is defined as
having a moisture percentage of >30, whereas dry
biomass is defined as having a moisture percentage
<30. It is usually recommended to use biomass with
very low moisture content as the feedstock for the
production of hydrochar. This biomass’s cellulose,
hemicellulose, and lignin content will breakdown
during thermal decomposition, and the more stable
feedstock will disintegrate at higher temperatures,
creating more pores on the surface and increasing
the hydrochar’s sorption capacity (Wu et al., 2008;
Beesley et al., 2011). Optimizing contaminant
removal parameters to reduce experimental trials is
a growing issue (Yousif et al., 2018). For the purpose
of displacing traditional experimental trials, many
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optimization technologies have been developed. The
response surface methodology (RSM) predicts the
output using two or more variables with a minimal
number of experimental trials (Gopal et al., 2014; Deb
et al., 2019; Ohale et al., 2017; Aravind et al., 2015).
The adaptive neuro-fuzzy inference system (ANFIS) is
a promising optimization technique with the highest
correlation coefficient.Complex nonlinear systems
can perform better when ANFIS is used (Tejada et
al., 2021). This study evaluated the use of P. juliflora
roots in batch procedures for hydrochar synthesis and
decolorization of reactive orange 16 (RO 16). P, juliflora
roots are naturally abundant in Southern India, but
its applicability is extremely limited. The functional
groups will increase the hydrochar’s absorption
ability. One of the most used textile dyes is reactive
dye. Covalent bonds between the dye and fabric,
which have a high binding affinity for cellulose or
fabric surface charges, produced this binding (Kumar
et al., 2019). Aromatic reactive dyes are notoriously
difficult to remove (Carneiro et al., 2005; Zhang et al.,
2017). Hydrochar from P. juliflora roots was used for
the first time to remove RO 16. Hydrochar dosage,
solute pH, starting RO 16 concentration, and batch
process temperature were optimized in this work. The
aim of the study is to compare the experimental data
with mathematical modeling to find out the fitting.
This study has been carried out in the Environmental
Engineering Laboratory of the Department of Civil
Engineering, SRM Institute of Science and Technology,
Kattankulathur, Chengalpattu, Tamil Nadu, India in
2022.

P. juliflora roots were collected from Ramanad
District, Southern Tamil Nadu, India. The harvested
P. juliflora roots were allowed to naturally dry for
seven days before being shredded to particle size
7.5 mm. Biomass moisture content was lowered by
drying for 24 h at 103°C in an oven with hot air. In
addition, this thermal biomass was destroyed at
300°C for 15 min without oxygen in an autoclave in
a muffle furnace (heating rate: 5°C per minute). As
soon as it reaches room temperature, the so-called
hydrochar residue of this biomass was employed for
adsorption investigations. In our study, hydrochar
was utilized in its unmodified state (Chai et al., 2021).
Sigma-Aldrich, India, supplied all of the compounds
employed in the current experiment, including RO 16.



C,,H,,N,Na,O,,S. was the empirical formula, 617.54
g/mol was the molecular weight, and 388 nm was the

wavelength of RO 16 (Kaminski et al., 2015).

Batch study

The batch adsorption process was run for 6 h in 250
mL conical flask with a 100-mL toiling volume using
an orbital shaker. For a thorough fusing of the sorbent
and dye molecules, the orbital shaker was run at 180
rpm. Following the batch trials, 5 cc of the sample
was centrifuged at 1800 rpm for 5 min. Lastly, an
ultra violet visible spectrophotometer was utilized to
determine the sample’s ultimate concentration. Egs.
1 and 2 are used to calculate the removal efficiency in
the dye (Lenin et al., 2021).

. (CO - Ce)
Removal efficiency = —c %100 (2)
0
Total dye removal (%) = Magsor 100 (2)
mlotal
Where;

V: dye treatment volume (L)
Co: pre-adsorption concentration (mg/L)
Ce: adsorption concentration (mg/L)

Design of experiments
RSM

Minitab was used to implement Box—Behnken
experimental design in response surface approach.

temperature, pH hydrochar dose, and initial RO 16
concentration. Table 1 presents a summary of the
variable’s many levels. Eq. 4 illustrates the RSM-
developed quadratic model (Lenin et al., 2021).

Y=0+ iﬂix, + iﬂ"xf
+ZO Z(ﬁuxixlj +O) @

=l j=i+l
Where;
Y: Response (% removal efficiency),
BO, Bi, Bii, and Bij: intercept, quadratic, linear and
interaction effects
xi, Xj: independent variables
€: error.

ANFIS

ANFIS is regarded as one of the most guaranteed
technologies for predicting nonlinear complex
systems (Del Cerro et al., 2021). The present study
validated ANFIS using RSM'’s projected experimental
run. In batch experiments, a total of 31 experimental
trials were used to predict clearance efficiency. The
predictive model is built on the first-order Sugeno,
and the resulting model for batch processes is shown
in Fig. 1. ANFIS contains five layers: one input, one
output, and three layers (fuzzification, logical rule,
and defuzzification). Hydrochar dose, initial RO 16
concentration, pH, and temperature are the batch
process inputs. The output layer for batch operations

The batch process input parameters were consists of a single output termed removal efficiency,
Table 1: Coded variables

Term Coef. SE Coef. t-value p-value VIF
Constant 67.89 6.77 10.02 0.000 -
Dosage 4.05 3.66 1.11 0.285 1.00
pH -1.58 3.66 -0.43 0.671 1.00
Initial concentration -3.72 3.66 -1.02 0.325 1.00
Temperature -3.72 3.66 -1.02 0.325 1.00
Dosage*dosage 0.66 3.35 0.20 0.846 1.03
pH*pH 2.06 3.35 0.61 0.548 1.03
Initial concentration*initial concentration 2.85 3.35 0.85 0.407 1.03
Temperature*temperature 2.64 3.35 0.79 0.443 1.03
Dosage*pH 2.02 4.48 0.45 0.658 1.00
Dosage*initial concentration 0.66 4.48 0.15 0.885 1.00
Dosage*temperature -2.02 4.48 -0.45 0.658 1.00
pH*initial concentration 2.02 4.48 0.45 0.658 1.00
pH*temperature -0.66 4.48 -0.15 0.885 1.00
Initial concentration*temperature -2.02 4.48 -0.45 0.658 1.00

(*VIF — Variance inflation factor)
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Comparison of ANFIS and RSM models to experimental analysis

Temperature

| X

Anfis model Removal Efficiency
(sugeno) f(u)
Initial dye
co nc:@tr,@,on Output

Fig. 1: ANFIS model for batch study

output membership function is the sum total of all
incoming signals. Removal efficiency will result from
combining these signals. The three hidden layers
are membership function, logical rule, and output
membership function for output prediction (Zaghloul
et al., 2020).

Statistical error analysis
Analysis done using Egs. 5-10 to find the model that
closely resembled the experimental data (HYBRID)
(Lenin et al., 2021).
Z{(Qex,,,,-

Average relative error (ARE)

|

Marquardt’s percent standard error deviation
(MPSED)

1
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(5)
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Absolute average relative error (AARE) (Zaghloul et

al., 2020)
N
i=1

Adjusted R?
* (N_l)

(N-P-2)

L
N

Qoo Qo
Oexyi

AARE

(8)

AdiR? = 1{(1—1?) (9)

|

Root mean square error (RMSE)

2
ul Qexp,i Qcal,i
i=1 Qexp,i
Where,

N:number of experiments,
P: factors.
Qexp,i: obtained values
Qcal,i: Model predictions.

1
N

RMSE = (10)

RESULTS AND DISCUSSION
RSM for batch study

The RSM model examined linear, quadratic, and
two-way variable interactions using a Box—Behnken




experimental design. The accuracy of the created
model using experimental data was projected using the
correlation coefficient with the highest value and the
error with the lowest value. A correlation coefficient (R?)
of 0.9978 was attained with little error. This points to the
fact that the derived model was highly connected with
experimental data (Jaafaria et al., 2019). In addition,
the adjusted R? was determined to be 0.9974, and the
difference between R? and adj R? was calculated to
be 0.0007, confirming adj R? was identical to R? and
emphasizing the model’s high significance. The adjusted
R? was employed in the model to calculate the variance
of the mean. The small difference between R? and adj
R? suggests that the model’s mean value is correct and
that no mistake was concomitant with model terms,
experimental data, or predicted data (Taran and Aghaie,
2015). The quadratic equation produced by the RSM
model for calculating removal efficiency (%) is shown in
Eq. 11.

Removal efficiency=96.1 + 0.4(A) - 5.50(B) - 0.215(C)
-0.114(D) + 0.42(A?) + 0.330(B?)

+0.000730(C?) + 0.00188(D?) + 0.65(A*B) +
0.0084(A*C) - 0.0432 (A*D)

+0.0129(B*C) - 0.0070(B*D) — 0.00086(C*D)

*A — Dosage, B — pH, C — Initial concentration, D —
Temperature (11)

The linear, quadratic, and two-way interaction
models’ analysis of variance is shown in Table 2. At
95% confidence, P values >0.05 are insignificant
(Sodeifian et al., 2015). Fisher’s F-value calculates the
mean square error sum/residual error ratio to assess
model and input parameter relevance. More relevant
models have higher F-values (Yan et al., 2014). The
model’s F and P values were 372 and 0.000001,
respectively, suggesting its importance. The model
also showed that linear and quadratic components
were significant, but two-way interactions were not
(Kamyab et al., 2022).

Diagnostic plots for batch study

Pareto charts and residual analysis were used to
evaluate the model’s relevance, which was calculated
via the Pareto chart. The model produced a 2.18
tvalue with 14° of freedom and 95% confidence
(=0.05). Significant factors have t values >2.18. Table
2 shows that quadratic and two-way interactions are
weak because linear component D (temperature) has
minimal effect. Hydrochar dosage, pH, and starting RO
16 concentration affect linear and quadratic models.
The Pareto analysis showed hydrochar dose and solute
pH significantly affected RO 16 removal efficiency.
Hydrochar dosage and solute pH exhibited the highest
t-test values, 52.53 and 31.92, respectively. Fig. 3 shows

Table 2: Analysis of variance (ANOVA) for batch adsorption process

Source DF Adj SS Adj MS f-value p-value Remarks
Model 14 1851.11 132.222 0.41 0.000 Significant
Linear 4 1116.63 279.159 0.87 0.000 Significant
Dosage 1 392.87 392.871 1.22 0.000 Significant
pH 1 60.25 60.246 0.19 0.000 Significant
Initial concentration 1 331.82 331.824 1.03 0.000 Significant
Temperature 1 331.69 331.694 1.03 0.000 Significant
Square 4 458.67 114.668 0.36 0.835

Dosage*dosage 1 12.47 12.469 0.04 0.000 Significant
pH*pH 1 121.30 121.297 0.38 0.000 Significant
Initial concentration*initial Concentration 1 232.60 232.605 0.72 0.000 Significant
Temperature*Temperature 1 198.93 198.928 0.62 0.000 Significant
2-Way Interaction 6 275.80 45.967 0.14 0.988

Dosage*pH 1 65.51 65.509 0.20 0.658

Dosage*initial concentration 1 6.88 6.884 0.02 0.885
Dosage*temperature 1 65.51 65.509 0.20 0.658

pH*initial concentration 1 65.51 65.509 0.20 0.658

pH*temperature 1 6.88 6.884 0.02 0.885

Initial concentration*temperature 1 65.51 65.509 0.20 0.658

Error 16 0.16 0.138

Lack-of-Fit 10 0.16 0.16 * * Significant
Pure error 6 0.000 0.000

Total 30 6991.67
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Fig. 2: Pareto chart analysis for removal efficiency

projected and actual residual error and probability
graphs. Predicted values matched experimental values
with a little residual error (Ahmad et al., 2009).

Hydrochar dosage and solute pH also affected RO 16
removal efficiency, according to the Pareto analysis in
Fig. 2. The maximal t-test values for hydrochar dosage
and solute pH were 52.53 and 31.92, respectively.
Fig. 3 shows predicted and actual residual error
and probability graphs. Predicted values matched
experimental values with a minor residual error.
Interpretations had a residual error ranging from +0.7 to
-0.7, with observation 8 exhibiting the largest residual
error of 0.7 (Xin hui et al., 2012).

Individual effects and interaction plots for batch study
Fig. 4 displays the effect of the influencing variables
and interaction graphs. Removal effectiveness rose
with an increase in hydrochar dosage, dropped with
a rise in pH, declined with an increase in starting RO
16 concentration, decreased when the temperature
was raised, and increased when the temperature was
raised to 40°C, as shown in Fig. 4. As temperature rises,
the sorbent may develop driving forces, speeding dye
molecules toward it and boosting sorption. When pH
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rose from 2 to 4, the mean value dropped from 82.81%
to 71.49%. This would be performed at a higher pH by
connecting positively charged protonated hydrogen ions
to the surface of the hydrochar, attracting negatively
charged reactive dyes (Munagapati et al., 2017). Fig. 5
shows the interaction plots for removal efficiency .The
removal efficacy improved as the hydrochar dosage
increased, perhaps due to the existence of more binding
sites at higher concentrations, resulting in enhanced
adsorption capacity. The limited surface area is
insufficient to absorb all of the dye molecules at a lower
dosage (Aksu and Zumriye, 2005). Figs. 5 and 6 show the
interactions between factors at different levels, as well
as a matrix plot for a batch study.

Response optimizer for batch study

Fig. 6 shows the response optimizer improving
removal efficacy. With an optimizer accuracy of 1,
removal efficacy went from 86.1% to 88.12%. Ideal
conditions were 2.6 g/L hydrochar, solute pH of 2, 250
mg/L RO 16, and a temperature of 38°C. Three sets of
batch experiments were done under ideal settings to
measure removal efficacy, and the results indicated an
average removal rate of 87.92%.
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Interaction Plot for Removal Efficiency
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ANFIS for batch study

Experimental data were evaluated using a hybrid
least square and gradient technique. Fig. 7 shows a
grid partitioned Sugeno-type structural model for
removal efficacy assessment. Four input variables
were utilized to produce a single output, with low,
medium, and high membership functions applied
to each. With minor errors, a correlation coefficient
of 0.9999 between the experimental and projected
values reveals that the model best matches the
experimental data. ANFIS trains data using fuzzy
inference with multiple hidden neural networks, which
reduces errors and improves model accuracy. Epoch 3
has a 0.000075 mean square error. This points toward
the model’s accuracy in predicting RO 16 elimination
efficiency. Table 3 contains a detailed description of the
expected removal efficiency for each trial (Ghorbani
et al., 2016). A surface map was also constructed to
better understand the interaction between the input
variables, as seen in Fig. 8. As shown in Fig. 8, removal
efficiency improved when the hydrochar dosage was
increased, the pH was dropped, the starting RO 16
concentration was decreased, and the temperature
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was reduced from 30°C to 35°C, with a further
temperature rise to 40°C, boosting removal efficacy.
Fig. 8a, for example, demonstrates the relationship
between hydrochar dosage (A) and pH (B) in terms
of removal efficiency. The removal effectiveness
improved as the hydrochar dosage increased from 1
to 3 g/L, but decreased when the pH increased from 2
to 4. The highest removal effectiveness of 85.6% was
observed with a hydrochar dosage of 3 g/L and pH 2.
Statistical and residual errors assessed experimental,
RSM, and ANFIS correctness. Table 3 demonstrates
experimental, RSM, and ANFIS elimination
effectiveness at different levels of residual errors for
each model. At pH 2, 2 g/L hydrochar, 500 mg/L RO 16,
and 35°C, 86.1% removal was achieved. Under identical
process settings, RSM and ANFIS removed 86.3%
and 86.1%, respectively. The findings show that RSM
and ANFIS projected values match real data, and the
residual error between experimental and model data
is minimized. RSM correlated 0.978 and ANFIS 0.9999.
ANFIS data matched experimental data better than
RSM, with reduced residual error. The RSM correlation
coefficient was 0.978 (Zaghloul et al., 2020).

tmf output
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Fig. 7: ANFIS for batch study
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Table 3: Removal efficiency of experimental, RSM and ANFIS models for batch study

Dosage pH Initial concentration Temperature Removal efficiency RSM ANFIS
0.5 7 150 90 60.065 60.2 60.1
0.5 7 25 15 81.0075 81.3 81.2
0.5 2 150 15 72.415 72.7 72.6
1.75 4.5 87.5 52.5 78.45875 78.8 78.8
0.5 2 25 90 77.4575 77.5 77.3
3 2 25 15 90.1975 90.4 90.6
0.75 4.5 87.5 52.5 63.49 63.8 63.5
1.75 4.5 87.5 52.5 78.45875 78.7 78.9
3 2 25 90 86.6475 86.8 86.3
1.75 4.5 87.5 52.5 78.45875 78.9 78.8
1.75 4.5 87.5 52.5 4.5 4.6 4.7

4.25 4.5 87.5 52.5 78.83375 78.9 78.8
1.75 4.5 87.5 52.5 78.45875 78.6 78.4
1.75 4.5 87.5 52.5 78.45 78.7 78.5
3 2 150 15 81.605 81.8 81.6
1.75 4.5 212.5 52.5 76.58 76.7 76.6
1.75 4.5 87.5 52.5 78.45875 78.6 78.7
3 7 25 15 81.3975 81.5 81.4
0.5 2 25 15 81.0075 81.1 81.4
3 7 25 90 77.8475 77.9 77.7
0.5 7 25 90 68.6575 68.7 68.8
1.75 4.5 87.5 52.5 76.35875 76.5 76.4
1.75 0.5 87.5 52.5 81.15875 81.4 81.3
0.5 7 150 15 63.615 63.7 63.5
3 2 150 90 58.315 58.4 58.7
1.75 4.5 -37.5 52.5 83.2775 83.3 83.4
0.5 2 150 90 68.865 68.9 68.9
1.75 4.5 87.5 22.5 81.7825 81.8 81.9
3 7 150 90 69.255 69.4 69.3
1.75 9.5 87.5 52.5 72.35875 72.5 72.4
3 7 150 15 94.24 94.6 94.6
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Fig. 8: (a) Surface plot of removal efficiency vs, pH, dosage,(b) Surface plot of removal efficiency vs. initial concentration, dosage (c) Surface
plot of removal efficiency vs. temperature, dosage
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Fig. 10:
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Fig. 10: Cluster analysis

Table 4: Statistical error analysis

S.No Error function RSM ANFIS
1 AARE 0.00003 0.00002
2 HYBRID 0.0015 0.00019
3 ARE 0.00125 0.00048
4 MPSED 0.00758 0.00285
5 RMSE 0.00009 0.00005
6 Adj R? 0.9981 0.9999
7 R? 0.9988 0.9999
Dosage Variable cluster analysis compares and 0.9999, respectively. The present correlation

experimental variables with RSM and ANFIS in Fig. 10.
It shows an experimental and RSM cluster with 99.99
similarity and zero distance. Experimental and RSM data
created the second cluster with a similarity of 99.94 and
a distance of 0.001. Experimental data matched ANFIS
results.

Statistical Error analysis verified the model’s accuracy
and precision against experimental data. Table 4 shows
experimental, RSM, and ANFIS model statistical errors.
It shows that both models had insignificant errors, and
the RSM and ANFIS correlation coefficients were 0.9988
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coefficient is extremely high and confirms the model’s
fit, according to Joglekar and May (Lenin et al., 2021).
To determine if RSM and ANFIS were overpredicted,
the corrected R? was 0.9988 and 0.9999, respectively.
These findings demonstrated that the model’s predicted
values match the experimental data. The fact that the
ANFIS model outperformed the RSM model was proved
by the fact that the ANFIS model had a higher correlation
coefficient and fewer mistakes. adj R? was 0.9981 and
0.9999. The model’s ANOVA shows that the difference
between R? and adj R? was 0.0011 and <0.1, proving its



Table 5: Overview of work carried out using RSM

Ind dent
Anaerobic reactor Type of pollutant Method Runs Dependant variables n .epen en
variables
Batch reactor Rice straw . . .
(Kainthola et al., 2018) hydrilla verticillata ccb 20 C/N ratio, F/M ratio, pH methane yield
Hybrid bioreactor (Mortezaei Yogurt .
CCD 19 COD infl t HRT
et al., 2018) effluent intluen
Batch reactor Cattle manure and Box— 29 Temperature Stirring time
(Safari et al., 2018) canola residues Behnken P g
MASBR (Rajasimman Textile waste .
et al, 2017) water CCD 13 Sorbent dosage Biomass support
Total solid,
Batch reactor Potato waste and Proportion of co- .
CCD 20 Meth Id
(Jacob S et al., 2016) aquatic weed support, Inoculum ethaneyle
concentration
Floating drum anaerobic
i thish T H
d|'gester (Sathish and Rice straw ccD 30 emperature, pH, ) Biogas yield
Vivekanandan et Substrate concentration
al., 2016)
. Biogas
:\glaxsiduﬁlgf:/logorf 5a)ctor Cow manure CCD 18 :\)/Il;si,nTelz\?eeirature, Production,
v g Methane yield
Batch reactor ?T:iirl]cllc f:—:Iascct)ll?dn CCD 20 PH, Substrate Biogas production
(Sajeena et al., 2014) P concentration, TOC gas p
waste
Dosage, pH,
Batch and Column reactor Reactive Red 120 Box— 27 Concentration, Removal Efficienc
(Lenin et al.,2021) dye Behnken Temperature,bed ¥
depth,flow rate
Reacti 16 Dosage, pH,
This study eac |v<z|orange Box Behnken 31 Concentration, Removal Efficiency
ve Temperature

capacity to predict words. It shows that all linear and
quadratic components are significant, and the two-
way interaction is inconsequential, making the model
significant. The Fisher F test scored 63.24, suggesting
that the model matches the experimental data.

Table 5 summarizes RSM predicted work compared
with that of this present study with the type of pollutant
used, method, number of runs, dependent variables,
and independent variables.The initial RSM design
technique—CCD, BBD, or FFD—received the greatest
attention from researchers. Most reactors investigated
four or fewer parameters, and the most common
were methane output, biogas generation rate,and
COD removal efficiency. To better understand their
applications, such as the BBD method used in trials with
various parameters, techniques other than CCD must be
optimized and designed. RSM may model and optimize
more than four effective factors to boost meaningfulness
and comprehensiveness (Jasni et al., 2020).
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RSM uses predictor variables and dependent
variables or responses. It is more practical than
statistical significance tests for optimizing variables/
factors (point estimate is the statistical jargon). Two
case studies showed that the ANFIS was faster and more
accurate than standard optimization approaches such
as the genetic algorithm. The ANFIS produced all fuzzy
inference system-required fuzzy data. Fuzzy inference
system reduces application development, execution, and
maintenance expenses, among others. Fuzzy inference
systems are more compact (require fewer rules); encode
high-level information even in the designer’s native
language; are less error-prone; can handle ambiguous,
uncertain, and imprecise input; are simpler to maintain.
Finally, Sugeno FIS can model and create hybrid systems
such as ANFIS and linguistic hedges. RO 16 was batch
sorptioned on P. juliflora root hydrochar in this study,
and RSM and ANFIS optimized process conditions.



At pH 2, 2 g/L hydrochar dosage, 35°C temperature,
and 250 mg/L starting RO 16 concentration, removal
effectiveness reached 86.1%. ANFIS predicted higher
values than RSM, with batch correlation coefficients of
0.9999 and 0.9997, respectively. Four input variables
were utilized to produce a single output, with low,
medium, and high membership functions applied to
each. With minor errors, a correlation coefficient of
0.9999 between the experimental and projected values
reveals that the model best matches the experimental
data.This study shows that mathematical techniques
can accurately estimate dye removal efficiency from
aqueous solutions.
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°C Degree Celcius

AARE Absolute average relative error

Adj MS Adjusted mean squares

Adj SS Adjusted sums of squares

ANFIS Adaptive Neuro-Fuzzy Inference
System

ANOVA Analysis of variance

C,H,N,Na,0,.S. Emprical formula for Reactive
Orange 16

cc cubic centimeters

cC Cubic Capacity

Ce concentration after adsorption

cl confidence interval

Co concentration before adsorption

DF Degrees of freedom

e.g Exempli gratia (for example)

f-value ratio of two variances

a/L gram/litre

g/mol Gram per molecule

Hz Hertz

ie. Id est (that is)

kg Kilogram

km Kilometer

m Meter

M Magnitude

m/s Meter per second (velocity unit)

m? Meter square

MASW Pearson correlation coefficient

mg/L Milli gram per litre

MPSED Marquardt’s percent standard
error deviation

N number of experimental
observations



nm Nano metre

NN Neural Network

P Number of factors

p-value probability value

Pi Profitability Index

Qcal,i calculated or predicted values of
the models

Qexp,i xperimental values

RMSE Root mean square error

RO 16 Reactive Orange 16

rom Revlotions per minute

RSM Response Surface Methodology

SE standard error

T test statistical test that is used to
compare the means of two
groups

4 total volume of dye to be
treated

Xi, Xj Independent variables

Y Response

60 Intercept

6i quadratic

Bii linear

Bij Interaction effects

£ Error
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